Skip to main content
Log in

Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Streptomyces lydicus A01 and Trichoderma harzianum P1 are potential biocontrol agents of fungal diseases in plants. S. lydicus A01 produces natamycin to bind the ergosterol of the fungal cell membrane and inhibits the growth of Botrytis cinerea. T. harzianum P1, on the other hand, features high chitinase activity and decomposes the chitin in the cell wall of B. cinerea. To obtain the synergistic biocontrol effects of chitinase and natamycin on Botrytis cinerea, this study transformed the chit42 gene from T. harzianum P1 to S. lydicus A01. The conjugal transformant (CT) of S. lydicus A01 with the chit42 gene was detected using polymerase chain reaction (PCR). Associated chitinase activity and natamycin production were examined using the 3, 5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry, respectively. The S. lydicus A01-chit42 CT showed substantially higher chitinase activity and natamycin production than its wild type strain (WT). Consequently, the biocontrol effects of S. lydicus A01-chit42 CT on B. cinerea, including inhibition to spore germination and mycelial growth, were highly improved compared with those of the WT. Our research indicates that the biocontrol effect of Streptomyces can be highly improved by transforming the exogenous resistance gene, i.e. chit42 from Trichoderma, which not only enhances the production of antibiotics, but also provides a supplementary function by degrading the cell walls of the pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso, C., Raposo, R., and Melgarejo, P. 2000. Genetic diversity in Botrytis cinerea populations on vegetable crops in greenhouses in south-eastern Spain. Plant Pathol. 49, 243–251.

    Article  Google Scholar 

  • Chen, Z., Wen, J., Song, Y., Wen, Y., and Li, J.L. 2007. Enhancement and selective production of avermectin B by recombinants of Streptomyces avermitilis via intraspecific protoplast fusion. Chinese Sci. Bull. 52, 616–622.

    Article  CAS  Google Scholar 

  • Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I., and Herrera-Estrella, A. 1998. The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol. Gen. Genet. 260, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Distefano, G., Malfa, S.L., Vitale, A., Lorito, M., Deng, Z.N., and Gentile, A. 2008. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res. 17, 873–879.

    Article  PubMed  CAS  Google Scholar 

  • Elad, Y., Chet, I., Boyle, P., and Henis, Y. 1983. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii-scanning electron microscopy and fluorescence microscopy. Phytopathology 73, 85–88.

    Article  Google Scholar 

  • Elad, Y. and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105, 177–189.

    Article  CAS  Google Scholar 

  • Harman, G.E., Hayes, C.K., Lorito, M., Broadway, R.M., Di Pietro, A., Peterbauer, C., and Tronsmo, A. 1993. Chitinolytic enzymes of Trichoderma harzianum: Purification of chitobiosidase and endochitinase. Phytopathology 83, 313–318.

    Article  CAS  Google Scholar 

  • Hong, B., Wu, B.Y., and Li, Y. 2003. Production of C-terminal amidated recombinant salmon calcitonin in Streptomyces lividans. Appl. Biochem. Biotechnol. 110, 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X.Q., Chen, L.H., Ran, W., Shen, Q.R., and Yang, X.M. 2011. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl. Microbiol. Biotechnol. 91, 741–755.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, R., Shirouzu, K., Nakashita, H., Lee, H.Y., Motoyama, T., Yamaguchi, I., Teraoka, T., and Arie, T. 2005. Foliar spray of validamycin A or validoxylamine A controls tomato Fusarium wilt. Phytopathology 95, 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces genetics, pp. 249–250. The John Innes Foundation, Norwich, England.

    Google Scholar 

  • Kim, K.J., Yang, Y.J., and Kim, J.G. 2003. Purification and characterization of chitinase from Streptomyces sp. M-20. J. Biochem. Mol. Biol. 36, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Limón, M.C., Chacón, M.R., Mejías, R., Delgado-Jarana, J., Rincón, A.M., Codón, A.C., and Benítez, T. 2004. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol. 64, 675–685.

    Article  PubMed  Google Scholar 

  • Liu, Y.S., Shibu, M.A., Jhan, H.J., Lo, C.T., and Peng, K.C. 2010. Purification and characterization of novel glucanases from Trichoderma harzianum ETS 323. J. Agr. Food Chem. 58, 10309–10314.

    Article  CAS  Google Scholar 

  • Lorito, M., Hayes, C.K., Di Pietro, A., Woo, S.L., and Harman, G.E. 1994. Purification, characterization and synergistic activity of a glucan 1, 3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84, 398–405.

    Article  CAS  Google Scholar 

  • Lorito, M., Peterbauer, C., Sposato, P., Mach, R.L., Strauss, J., and Kubicek, C.P. 1996. Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc. Natl. Acad. Sci. USA 93, 14868–14872.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C.G., Liu, W.C., Qiu, J.Y., Wang, H.M., Liu, T., and Liu, D.W. 2008. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01. Braz. J. Microbiol. 39, 701–707.

    Article  Google Scholar 

  • Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S.L., Zeilinger, S., Kullnig, C.M., Lorito, M., and Kubicek, C.P. 1999. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol. 65, 1858–1863.

    PubMed  CAS  Google Scholar 

  • Monte, E. 2010. Understanding Trichoderma: Between biotechnology and microbial ecology. Int. Microbiol. 4, 1–4.

    Google Scholar 

  • Nampoothiri, K.M., Baijua, T.V., Sandhya, C., Sabu, A., Szakacs, G., and Pandey, A. 2004. Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochem. 39, 1583–1590.

    Article  CAS  Google Scholar 

  • Nawani, N.N. and Kapadnis, B.P. 2005. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40, 651–660.

    Article  CAS  Google Scholar 

  • Pintado, C.M.B.S., Ferreira, M.A.S.S., and Sousa, I. 2010. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control. 21, 240–246.

    Article  CAS  Google Scholar 

  • Reissig, J.L., Storminger, J.L., and Leloir, L.F. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 217, 959–966.

    PubMed  CAS  Google Scholar 

  • Steyaert, J.M. 2004. Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum. Mycologia 96, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • te Welscher, Y.M., ten Napel, H.H., Balagué, M.M., Souza, C.M., Riezman, H., de Kruijff, B., and Breukink, E. 2008. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 283, 6393–6401.

    Article  Google Scholar 

  • te Welscher, Y.M., Jones, L., van M.R., Dijksterhuis, J., de Kruijff, B., Eitzen, G., and Breukink, E. 2010. Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob. Agents Chemother. 54, 2618–2625.

    Article  Google Scholar 

  • Viterbo, A., Haran, S., Friesem, D., Ramot, O., and Chet, I. 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol. Lett. 200, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.J., Wang, X.C., and Xiang, W.S. 2009. Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet-and chemically induced mutants. World J. Microbiol. Biotechnol. 25, 1051–1056.

    Article  CAS  Google Scholar 

  • Woo, S.L., Donzelli, B., Scala, F., Mach, R., Harman, G.E., Kubicek, C.P., Del Sorbo, G., and Lorito, M. 1999. Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. MPMI. 12, 419–429.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Bai, L., Liu, W. et al. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea . J Microbiol. 51, 166–173 (2013). https://doi.org/10.1007/s12275-013-2321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2321-8

Keywords

Navigation