Skip to main content
Log in

Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet- and chemically induced mutants

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Milbemycin antibiotics are produced by Streptomyces hygroscopicus subsp. aureolacrimosus and a newly isolated Streptomyces bingchenggensis, respectively. According to the biosynthetic pathway of milbemycins generated by S. hygroscopicus subsp. aureolacrimosus, a rational screening procedure with UV irradiation and N-methyl-N′-nitroso-N-nitrosoguanidine (NTG) mutation was performed to obtain high milbemycin-producing S. bingchenggensis. Aminoacetic acid (Glycine)-resistant mutants (AAr), propionate-resistant mutants (PRPr), streptomycin-resistant mutants (STRr) and 2-deoxy-d-glucose-resistant mutants (DOGr) were selected successively. A strain S. bingchenggensis BC-109-6 with AAr, PRPr, STRr and DOGr was obtained and its production of milbemycin A3 and A4 reached 1,450 μg/ml, which was 80% higher than that of the ancestral strain S. bingchenggensis BC-101-4. The subculture experiments indicated that the hereditary characteristic of high productivity of S. bingchenggensis BC-109-6 was stable. The production of milbemycin A3 and A4 by S. bingchenggensis BC-109-6 in a 50-l fermentor could reach 1,380 μg/ml after 360 h batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beltrametti F, Jovetic S, Feroggio M, Gastaldo L, Selva E, Marinelli F (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot 57:37–44

    CAS  Google Scholar 

  • Beltrametti F, Rossi R, Selva E, Marinelli F (2006) Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and rifamycin. J Ind Microbiol Biotechnol 33:283–288. doi:10.1007/s10295-005-0061-4

    Article  CAS  Google Scholar 

  • Chen JM, Xu LT (1991) Analysis of antibiotic industry, 2nd edn. Chinese Press of Pharmaceutical Science, Beijing, pp 109–139. ISBN 7-5067-0353-X

    Google Scholar 

  • Davies GH, Green RH (1991) Avermectins and milbemycins. Chem Soc Rev 20:211–269. doi:10.1039/cs9912000211

    Article  CAS  Google Scholar 

  • Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42:2041–2047

    CAS  Google Scholar 

  • Hu H, Ochi K (2001) Novel approach for improvement the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 67:1885–1892. doi:10.1128/AEM.67.4.1885-1892.2001

    Article  CAS  Google Scholar 

  • Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNApolymerase beta subunit) of Streptomyces lividans. J Bacteriol 184:3984–3991. doi:10.1128/JB.184.14.3984-3991.2002

    Article  CAS  Google Scholar 

  • Ide J, Okazaki T, Ono M, Saito A, Nakagawa K, Naito S, Sato K, Tanaka K, Yoshikawa H, Ando M, Katsumi S, Matsumoto K, Toyama T, Shibano M, Abe M (1993) Milbemycin: discovery and development. Annu Rep Snakyo Res Lab 45:1–98

    CAS  Google Scholar 

  • Ikeda H, Omura S (1995) Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J Antibiot 48:549–561

    CAS  Google Scholar 

  • Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97:2591–2609. doi:10.1021/cr960023p

    Article  CAS  Google Scholar 

  • Jin ZH, Wang MR, Cen PL (2002a) Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening. J Gen Appl Microbiol 48:329–334. doi:10.2323/jgam.48.329

    Article  CAS  Google Scholar 

  • Jin ZH, Wang MR, Cen PL (2002b) Production of teicoplanin by valine analogue-resistant mutant strains of Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 58:63–66. doi:10.1007/s00253-001-0872-9

    Article  CAS  Google Scholar 

  • Jin ZH, Lei YL, Lin JP, Cen PL (2006) Improvement of pristinamycin-producing Streptomyces pristinaespialis by rational screening. World J Microbiol Biotechnol 22:129–134. doi:10.1007/s11274-005-9008-1

    Article  CAS  Google Scholar 

  • Nonaka K, Kumasaka C, Okamoto Y, Maruyama F, Yoshikawa H (1999) Bioconversion of milbemycin-related compounds: biosynthetic pathway of milbemycins. J Antibiot 52:109–116

    CAS  Google Scholar 

  • Ochi K (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to a factor. J Bacteriol 169:3608–3616

    CAS  Google Scholar 

  • Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292. doi:10.1016/j.ymben.2008.07.001

    Article  CAS  Google Scholar 

  • Ono M, Mishima H, Takiguchi Y, Terao M (1983) Milbemycins, a new family of macrolide antibiotics studies on the biosynthesis of milbemycins α2, α4 and D using 13C labeled precursors. J Antibiot 36:991–999

    CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301. doi:10.1007/s002530000403

    Article  CAS  Google Scholar 

  • Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb Technol 6:3–10. doi:10.1016/0141-0229(84)90070-X

    Article  CAS  Google Scholar 

  • Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178:7276–7284

    CAS  Google Scholar 

  • Shoop WL, Mrozik H, Fisher MH (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59:139–156. doi:10.1016/0304-4017(94)00743-V

    Article  CAS  Google Scholar 

  • Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69:6412–6417. doi:10.1128/AEM.69.11.6412-6417.2003

    Article  CAS  Google Scholar 

  • Tsou HR, Ahmed ZH, Fiale RR, Bullock MW (1989) Biosynthetic origin of the carbon skeleton and oxygen atoms of the LL-F28249α: a potent antibiotic macrolide. J Antibiot 41:398–406

    Google Scholar 

  • Vinci VA, Byng G (1999) Manual of industrial microbiology and biotechnology. ASM, Washington

    Google Scholar 

  • Xiang WS, Wang JD, Wang XJ (2007a) Further new milbemycin antibiotics from Streptomyces bingchenggensis. J Antibiot 60:608–613. doi:10.1038/ja.2007.78

    Article  CAS  Google Scholar 

  • Xiang WS, Wang JD, Wang XJ (2007b) Two new milbemycins from Streptomyces bingchenggensis fermentation, isolation, structure elucidation and biological properties. J Antibiot 60:351–356. doi:10.1038/ja.2007.47

    Article  CAS  Google Scholar 

  • Xiang WS, Wang JD, Fan HM, Wang XJ (2008) New seco-milbemycins from Streptomyces bingchenggensis: fermentation, isolation and structure elucidation. J Antibiot 61:26–32. doi:10.1038/ja.2008.105

    Article  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the National Key Technology R&D Program (No. 2006BAD31B02), the National Natural Science Foundation of China (30571234 and 30771427), and the Outstanding Youth Foundation of Heilongjiang Province (No. JC200706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XJ., Wang, XC. & Xiang, WS. Improvement of milbemycin-producing Streptomyces bingchenggensis by rational screening of ultraviolet- and chemically induced mutants. World J Microbiol Biotechnol 25, 1051–1056 (2009). https://doi.org/10.1007/s11274-009-9986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9986-5

Keywords

Navigation