Skip to main content

Advertisement

Log in

Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms used in food technology and probiotics are exposed to technological and digestive stresses, respectively. Traditionally used as Swiss-type cheese starters, propionibacteria also constitute promising human probiotics. Stress tolerance and cross-protection in Propionibacterium freudenreichii were thus examined after exposure to heat, acid, or bile salts stresses. Adapted cells demonstrated acquired homologous tolerance. Cross-protection between bile salts and heat adaptation was demonstrated. By contrast, bile salts pretreatment sensitized cells to acid challenge and vice versa. Surprisingly, heat and acid responses did not present significant cross-protection in P. freudenreichii. During adaptations, important changes in cellular protein synthesis were observed using two-dimensional electrophoresis. While global protein synthesis decreased, several proteins were overexpressed during stress adaptations. Thirty-four proteins were induced by acid pretreatment, 34 by bile salts pretreatment, and 26 by heat pretreatment. Six proteins are common to all stresses and represent general stress-response components. Among these polypeptides, general stress chaperones, and proteins involved in energetic metabolism, oxidative stress response, or SOS response were identified. These results bring new insight into the tolerance of P. freudenreichii to heat, acid, and bile salts, and should be taken into consideration in the development of probiotic preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2
Fig. 3a–c

Similar content being viewed by others

References

  • Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M (1997) First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:1451–1463

    CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    PubMed  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J (1999) Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol 39:68–72

    Article  CAS  PubMed  Google Scholar 

  • Bougle D, Roland N, Lebeurrier F, Arhan P (1999) Effect of propionibacteria supplementation on fecal bifidobacteria and segmental colonic transit time in healthy human subjects. Scand J Gastroenterol 34:144–148

    Article  CAS  PubMed  Google Scholar 

  • Breton YL, Maze A, Hartke A, Lemarinier S, Auffray Y, Rince A (2002) Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis. Curr Microbiol 45:434–439

    PubMed  Google Scholar 

  • Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482

    CAS  PubMed  Google Scholar 

  • Chou LS, Weimer B (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    CAS  PubMed  Google Scholar 

  • Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982

    CAS  PubMed  Google Scholar 

  • Duche O, Tremoulet F, Glaser P, Labadie J (2002) Salt Stress Proteins Induced in Listeria monocytogenes. Appl Environ Microbiol 68:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Duwat P (1999) Stress response pathways in Lactococcus lactis. Recent Res Devel Microbiology 3:335–348

    CAS  Google Scholar 

  • Flahaut S, Frere J, Boutibonnes P, Auffray Y (1996a) Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis. Appl Environ Microbiol 62:2416–2420

    CAS  PubMed  Google Scholar 

  • Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996b) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138:49–54

    Article  CAS  PubMed  Google Scholar 

  • Flahaut S, Frere J, Boutibonnes P, Auffray Y (1997) Relationship between the thermotolerance and the increase of DnaK and GroEL synthesis in Enterococcus faecalis ATCC19433. J Basic Microbiol 37:251–258

    CAS  PubMed  Google Scholar 

  • Foster JW (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987

    CAS  PubMed  Google Scholar 

  • Franklyn KM, Warmington JR (1994) The expression of Candida albicans enolase is not heat shock inducible. FEMS Microbiol Lett 118:219–225

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Google Scholar 

  • Goldin BR and Gorbach SL (1992) Probiotics for humans. In: Fuller, R. (ed) Probiotics, the scientific basis. Chapman & Hall, London, pp 355–376

  • Gouesbet G, Jan G, Boyaval P (2002) Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl Environ Microbiol 68:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619

    CAS  PubMed  Google Scholar 

  • Hartke A, Bouché S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33:194–199

    Article  CAS  PubMed  Google Scholar 

  • Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    CAS  PubMed  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011–5015

    CAS  PubMed  Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Jacobsen CN, Rosenfeldt N, V, Hayford AE, Moller PL, Michaelsen KF, Paerregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956

    CAS  PubMed  Google Scholar 

  • Jan G, Leverrier P, Roland N (2001a) Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait 82:131–144

    Article  Google Scholar 

  • Jan G, Leverrier P, Pichereau V, Boyaval P (2001b) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029–2036

    Article  PubMed  Google Scholar 

  • Jan G, Belzacq AS, Haouzi D, Rouault A, Metivier D, Kroemer G, Brenner C (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9:179–188

    Article  CAS  PubMed  Google Scholar 

  • Jungblut PR, Bumann D, Haas G, Zimny-Arndt U, Holland P, Lamer S, Siejak F, Aebischer A, Meyer TF (2000) Comparative proteome analysis of Helicobacter pylori. Mol Microbiol 36:710–725

    Article  CAS  PubMed  Google Scholar 

  • Laport MS, de Castro AC, Villardo A, Lemos JA, Bastos MC, Giambiagi-deMarval M (2001) Expression of the major heat shock proteins DnaK and GroEL in Streptococcus pyogenes: a comparison to Enterococcus faecalis and Staphylococcus aureus. Curr Microbiol 42:264–268

    CAS  PubMed  Google Scholar 

  • Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G (2003) Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 69:3809–3818

    Article  CAS  PubMed  Google Scholar 

  • Lorca GL, Raya RR, Taranto MP, De Valdez GF (1998) Adaptative acid tolerance response in Lactobacillus acidophilus. Biotechnol Lett 20:239–241

    Article  CAS  Google Scholar 

  • Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255

    CAS  PubMed  Google Scholar 

  • Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 59:83–88

    CAS  PubMed  Google Scholar 

  • Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55

    CAS  PubMed  Google Scholar 

  • Mackey AJ, Haystead TA, Pearson WR (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1:139–147

    Article  CAS  PubMed  Google Scholar 

  • Malik AC, Reinbold GW, Vedamuthu ER (1968) An evaluation of the taxonomy of Propionibacterium. Can J Microbiol 14:1185–1191

    CAS  PubMed  Google Scholar 

  • Mantere-Alhonen S (1995) Propionibacteria used as probiotics—A review. Lait 75:447–452

    CAS  Google Scholar 

  • Mooney C, Munster DJ, Bagshaw PF, Allardyce RA (1990) Helicobacter pylori acid resistance. Lancet 335:1232

    CAS  PubMed  Google Scholar 

  • Mori H, Sato Y, Taketomo N, Kamiyama T, Yoshiyama Y, Meguro S, Sato H, Kaneko T (1997) Isolation and structural identification of bifidogenic growth stimulator produced by Propionibacterium freudenreichii . J Dairy Sci 80:1959–1964

    CAS  PubMed  Google Scholar 

  • Moulis JM, Davasse V, Meyer J, Gaillard J (1996) Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with the Clostridium pasteurianum enzyme. FEBS Lett 380:287–290

    Article  CAS  PubMed  Google Scholar 

  • Murtif VL, Bahler CR, Samols D (1985) Cloning and expression of the 1.3S biotin-containing subunit of transcarboxylase. Proc Natl Acad Sci U S A 82:5617–5621

    CAS  PubMed  Google Scholar 

  • O’Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63:4210–4215

    CAS  PubMed  Google Scholar 

  • Pérez Chaia A, Zarate G, Oliver G (1999) The probiotic properties of propionibacteria. Lait 79:175–185

    Google Scholar 

  • Periago PM, van Schaik W, Abee T, Wouters JA (2002) Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl Environ Microbiol 68:3486–3495

    Article  CAS  PubMed  Google Scholar 

  • Perrot F, Hebraud M, Charlionet R, Junter GA, Jouenne T (2001) Cell immobilization induces changes in the protein response of Escherichia coli K-12 to a cold shock. Electrophoresis 22:2110–2119

    Article  CAS  PubMed  Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183:5617–5631

    Article  CAS  PubMed  Google Scholar 

  • Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann NY Acad Sci 851:147–151

    CAS  PubMed  Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    CAS  PubMed  Google Scholar 

  • Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    CAS  PubMed  Google Scholar 

  • Thierry A, Salvat-Brunaud D, Madec MN, Michel F, Maubois JL (1998) Affinage de l’emmental: dynamique des populations bactériennes et évolution de la composition de la phase aqueuse. Lait 78:521–542

    CAS  Google Scholar 

  • Wilkins JC, Homer KA, Beighton D (2002) Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390

    Article  CAS  PubMed  Google Scholar 

  • Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350

    CAS  PubMed  Google Scholar 

  • Zarate G, Chaia AP, Gonzalez S, Oliver G (2000) Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221

    Google Scholar 

Download references

Acknowledgements

Standa Industrie is greatly acknowledged for financial support and for constant interest and enthusiasm in this work. P. Leverrier is the recipient of a grant from the Institut National de la Recherche Agronomique and from Standa Industrie. John Hannon is acknowledged for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwénaël Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leverrier, P., Vissers, J.P.C., Rouault, A. et al. Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii . Arch Microbiol 181, 215–230 (2004). https://doi.org/10.1007/s00203-003-0646-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0646-0

Keywords

Navigation