Skip to main content
Log in

Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A new approach for enrichment culture was applied to obtain cold-active protease-producing bacteria for marine and terrestrial samples from Svalbard, Norway. The method was developed for the enrichment of bacteria by long-term incubation at low temperatures in semi-solid agar medium containing meat pieces as the main source of carbon and energy. ZoBell and 0.1× nutrient broth were added for marine and terrestrial microorganisms, respectively, to supply basal elements for growth. One to three types of colonies were observed from each enrichment culture, indicating that specific bacterial species were enriched during the experimental conditions. Among 89 bacterial isolates, protease activity was observed from 48 isolates in the screening media containing skim milk. Good growth was observed at 4°C and 10°C while none of the isolates could grow at 37°C. At low temperatures, enzyme activity was equal to or higher than activity at higher temperatures. Bacterial isolates were included in the genera Pseudoalteromonas (33 isolates), Arthrobacter (24 isolates), Pseudomonas (16 isolates), Psychrobacter (6 isolates), Sphingobacterium (6 isolates), Flavobacterium (2 isolates), Sporosarcina (1 isolate), and Stenotrophomonas (1 isolate). Protease activity was observed from Pseudoalteromonas (33 isolates), Pseudomonas (10 isolates), Arthrobacter (4 isolates), and Flavobacterium (1 isolate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavicchioli, R., K.S. Siddiqui, D. Andrews, and K.R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., X. Xiao, P. Wang, X. Zeng, and F. Wang. 2005. Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Arch. Microbiol. 183, 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.L., Y.Z. Zhang, P.J. Gao, and X.W. Luan. 2003. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoalteromonas sp. SM9913. Mar. Biol. 143, 989–993.

    Article  CAS  Google Scholar 

  • Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D.A., A. Casanueva, and W. Stafford. 2007. Ecology and biodiversity of cold-adapted microorganisms, pp. 119–132. In C. Gerday and N. Glansdorff (eds.), Physiology and biochemistry of extremophiles. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Dastager, S.G., A. Dayanand, W.J. Li, C.J. Kim, J.C. Lee, D.J. Park, X.P. Tian, and Q.S. Raziuddin. 2008. Proteolytic activity from an alkali-thermotolerant Streptomyces gulbargensis sp. nov. Curr. Microbiol. 57, 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Ding, L., T. Hirose, and A. Yokota. 2009. Four novel Arthrobacter species isolated from filtration substrate. Int. J. Syst. Evol. Microbiol. 59, 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Dube, S., L. Singh, and S.I. Alam. 2001. Proteolytic anaerobic bacteria from lake sediments of Antarctica. Enz. Microb. Technol. 28, 114–121.

    Article  CAS  Google Scholar 

  • Fu, Y., X. Tang, Q. Lai, C. Zhang, H. Zhong, W. Li, Y. Liu, L. Chen, F. Sun, and Z. Shao. 2010. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. Article in press.

  • Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D’Amico, and et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Groudieva, T., M. Kambourova, H. Yusef, M. Royter, R. Grote, H. Trinks, and G. Antranikian. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475–488.

    Article  CAS  PubMed  Google Scholar 

  • Heyman, J., J. Verbeeren, P. Schumann, J. Swing, and P. De Vos. 2005. Six novel Arthrobacter species isolated from deteriorated mural paintings. Int. J. Syst. Evol. Microbiol. 55, 1457–1464.

    Article  Google Scholar 

  • Huston, A.L. 2008. Biotechnological aspects of cold-adapted enzymes, pp. 347–363. In C. Gerday and N. Glansdorff (eds.), Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Kageyama, A., K. Morisaki, S. Omura, and Y. Takahashi. 2008. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int. J. Syst. Evol. Microbiol. 58, 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons Inc., New York, N.Y., USA.

    Google Scholar 

  • Lee, Y.K., H.J. Jung, and H.K. Lee. 2006. Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J. Microbiol. 44, 694–698.

    CAS  PubMed  Google Scholar 

  • Lee, Y.K., K.C. Sung, J.H. Yim, K.J. Park, H. Chung, and H.K. Lee. 2005. Isolation of protease-producing Arctic marine bacteria. Ocean Pol. Res. 27, 215–219.

    Article  Google Scholar 

  • Olivera, N.L., C. Sequeiros, and M.L. Nievas. 2007. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11, 517–526.

    Article  CAS  PubMed  Google Scholar 

  • Russell, N.J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61, 1–21.

    CAS  PubMed  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Salwan, R., A. Gulati, and R.C. Kasana. 2010. Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India. J. Basic Microbiol. 50, 1–10.

    Article  Google Scholar 

  • Sookkheo, B., S. Sinchaikul, S. Phutrakul, and S.T. Chen. 2000. Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr. Purif. 20, 142–151.

    Article  CAS  PubMed  Google Scholar 

  • Staley, J.T. and R.P. Herwig. 1993. Degradation of particulate organic material in the Antarctic, pp. 241–264. In E.I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss Inc., New York, N.Y., USA.

    Google Scholar 

  • Vazquez, S.C., S.H. Coria, and W.P. Mac Cormack. 2004. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol. Res. 159, 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J.H., S. Park, S.J. Kang, S.J. Oh, S.C. Myung, and W. Kim. 2010. Flavobacterium ponti sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. Article in press.

  • Zeng, R., R. Zhang, J. Zhao, and N. Lin. 2003. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 4, 335–337.

    Article  Google Scholar 

  • Zhou, M.Y., X.L. Chen, H.L. Zhao, H.Y. Dang, X.W. Luan, X.Y. Zhang, H.L. He, B.C. Zhou, and Y.Z. Zhang. 2005. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microb. Ecol. 58, 582–590.

    Article  Google Scholar 

  • Zhu, F., S. Wang, and P. Zhou. 2003. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int. J. Syst. Evol. Microbiol. 53, 853–857.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Gyu Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.H., Cho, K.H., Lee, Y.M. et al. Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture. J Microbiol. 48, 426–432 (2010). https://doi.org/10.1007/s12275-010-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0015-z

Keywords

Navigation