Skip to main content
Log in

Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Protease-producing bacteria isolated from sub-Antarctic marine sediments of Isla de Los Estados (Argentina) were characterized, and the thermal inactivation kinetics of their extracellular proteases compared. Isolates were affiliated with the genera Pseudoalteromonas, Shewanella, Colwellia, Planococcus, and a strain to the family Flavobacteriaceae. Colwellia strains were moderate psychrophiles (optimal growth at about 15°C, maximum growth temperature at around 25°C). 16S rRNA phylogenetic analysis revealed that these strains and Colwellia aestuarii form a distinct lineage within the genus. The remaining isolates were psychrotolerant and grew optimally between 20 and 25°C; two of them represent potentially novel species or genus (16S rRNA < 97% sequence similarity). The thermostability of the extracellular proteases produced by the isolates was analysed, and the inactivation rate constant (k in), the activation energy (Eain) and the activation Gibbs free energy of thermal inactivation (ΔG * in) determined. ΔG * in, calculated at 30°C, varied between 97 and 124 kJ/mol. Colwellia enzyme extracts presented the highest thermosensitivity, while the most thermostable protease activity was shown by Shewanella spp. These results demonstrated that the stability to temperature of these enzymes varies considerably among the isolates, suggesting important variations in the thermal properties of the proteases that can coexist in this environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller M, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Atlas RM, Bartha R (1981) Microbial ecology: fundamentals and applications. Addison–Wesley, Reading

    Google Scholar 

  • Bai Y, Yang D, Wang J, Xu S, Wang X, An L (2006) Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 157:741–751

    Article  PubMed  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997a) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 68:3068–3078

    Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997b) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    CAS  Google Scholar 

  • Bowman JP, McCammon SA, Gibson JAE, Robertson L, Nichols PD (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69:2448–2462

    Article  PubMed  CAS  Google Scholar 

  • Brown AC, McLachlan A (1990) Ecology of Sandy Shores. Elsevier, Amsterdam

    Google Scholar 

  • Chen XL, Zhang YZ, Gao PJ, Luan XW (2003) Two different proteases produced by a deep-sea psychrophic bacterial strain, Pseudoalteromonas sp. SM9913. Mar Biol 143:989–993

    Article  CAS  Google Scholar 

  • Connelly TL, Tilburg CM, Yager PL (2006) Evidence for psychrophiles outnumbering psychrotolerant marine bacteria in the springtime coastal Arctic. Limnol Oceanogr 51:1205–1210

    Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    PubMed  CAS  Google Scholar 

  • Esteves JL, Commendatore MG, Nievas ML, Massara Paletto V, Amin O (2006) Hydrocarbon pollution in coastal sediments of Tierra del Fuego Islands, Patagonia Argentina. Mar Pollut Bull 52:582–590

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Tibtech 18:103–107

    CAS  Google Scholar 

  • Gounot AM (1976) Effects of temperature on the growth of psychrophilic bacteria from glaciers. Can J Microbiol 22:839–846

    Article  PubMed  CAS  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria—occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

    PubMed  CAS  Google Scholar 

  • Irwin JA, Alfredesson GA, Lanzetti AJ, Haflidi M, Gudmundsson HM, Engel PC (2001) Purification and characterization of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol Lett 201:285–290

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788

    Article  PubMed  CAS  Google Scholar 

  • Jung SY, Oh TK, Yoon JH (2006) Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 56:33–37

    Article  PubMed  CAS  Google Scholar 

  • Kristjánsson MM, Magnússon OT, Gudmundsson HM, Alfredsson GA, Matsuzawa H (1999) Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species. Comparison with proteinase K and aqualysin I. Eur J Biochem 260:752–760

    Article  PubMed  Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65:611–617

    PubMed  CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    PubMed  CAS  Google Scholar 

  • Mancuso Nichols C, Garon Lardiere S, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    Article  CAS  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  CAS  Google Scholar 

  • Mikhailov VV, Romanenko LA, Ivanova EP (2002) The genus Alteromonas and related Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.10. Springer, New York. http://www.link.springer-ny.com/link/service/books/10125/

  • Moran AJ, Hills M, Gunton J, Nano FE (2001) Heat-labile proteases in molecular biology applications. FEMS Microbiol Lett 197:59–63

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokohama K, Tamiya E (1998) Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Appl Microbiol Biotechnol 50:669–675

    Article  PubMed  CAS  Google Scholar 

  • Olivera N, Siñeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., isolated from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447

    Article  PubMed  CAS  Google Scholar 

  • Prabagaran SR, Panorama R, Delille D, Shivaji S (2006) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol Online early

  • Russell RJ (1990) Cold adaptation of microorganisms. Phil Trans R Soc Lond B 326:595–611

    CAS  Google Scholar 

  • Sánchez-Porro C, Mellado Costanzo Bertoldo E, Antranikian G, Ventosa A (2003) Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7:221–228

    PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Steven B, Léveillé R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Swofford DL (2001) PAUP: Phylogenetic analysis using parsimony, Version 4.0b10. Computer program distributed by the Illinois Natural History Survey, Champaign, IL

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wang QF, Miao JL, Hou YH, Ding Y, Wang GD, Li GY (2005) Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol Lett 27:1195–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (PME 216-UNPSJB BID 1201/OC-AR), Argentina. The authors acknowledge Dr. José Luis Esteves for providing sediment samples (GEF-UNDP, Arg 97/63, Consolidación e Implementación del Plan de Manejo Integrado de la Zona Costera Patagónica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelda L. Olivera.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivera, N.L., Sequeiros, C. & Nievas, M.L. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 11, 517–526 (2007). https://doi.org/10.1007/s00792-007-0064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0064-3

Keywords

Navigation