Skip to main content
Log in

Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The inadequate impedance matching and weak attenuation capability for incident electromagnetic waves exhibited by carbon fibers (CF) are critical factors limiting their application served as absorbing materials. Constructing a nanocomposite system that simultaneously exhibits both dielectric loss and magnetic loss characteristics is a feasible strategy to overcome these limitations. In the present study, a core-shell CF@PPy@CoFe2O4 nanocomposite is fabricated through electrodeposition and subsequent hydrothermal methods to enhance the attenuation capacity and impedance matching of bare CF. Under the synergistic effects of diverse components and a peculiar network structure, the nanocomposite demonstrates optimized conductive loss and polarization loss, which results in a remarkable electromagnetic wave absorption performance with a minimum reflection loss (RLmin) of -55.33 dB and an effective absorption bandwidth (EAB) of 6.48 GHz (12 ~ 18 GHz) at optimal thicknesses of 2.11 and 2.42 mm, respectively, suggesting its promising application as a candidate absorber. More importantly, the exploration concerning the absorption mechanism provides significant insights into the attenuation modes of the dielectric-magnetic loss hetero-junction, which is beneficial for developing similar absorbing materials.

Graphical abstract

CF@PPyCoFe2O4 nanocomposite displays an efficient electromagnetic wave absorption capacity by virtue of its excellent conductive loss and polarization loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be available upon proper request.

References

  1. Li F, Wu N, Kimura H et al (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nanomicro Lett 15(1):220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim S, Lee S, Zhang Y et al (2023) Carbon-based radar absorbing materials toward stealth technologies. Adv Sci 10(32):2303104. https://doi.org/10.1002/advs.202303104

  3. Zhang Y, Gao S, Xia B et al (2023) Coal gasification fine slag doped with Fe3O4: high-performance electromagnetic-wave absorbers. J Magn Magn Mater 580:170916. https://doi.org/10.1016/j.jmmm.2023.170916

    Article  CAS  Google Scholar 

  4. Wu Y, Chen L, Han Y et al (2023) Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res 16:7801–7809. https://doi.org/10.1007/s12274-023-5522-4

    Article  CAS  Google Scholar 

  5. Gu H, Huang J, Li N et al (2023) Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J Mater Sci Technol 146:145–153. https://doi.org/10.1016/j.jmst.2022.11.010

    Article  CAS  Google Scholar 

  6. Lan D, Wang Y, Wang YY et al (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Q, Cao WQ, Zhai H et al (2023) Tailoring carbon-based nanofiber microstructures for electromagnetic absorption, shielding, and devices. Mater Chem Front 7:1737–1759. https://doi.org/10.1039/D2QM01271E

    Article  CAS  Google Scholar 

  8. Wu X, Huang J, Gu H et al (2022) Ni Doping in MnO2/MXene (Ti3C2Tx) composites to modulate the Oxygen vacancies for boosting microwave absorption. ACS Appl Electron Mater 4(7):3694–3706. https://doi.org/10.1021/acsaelm.2c00654

    Article  CAS  Google Scholar 

  9. Yang W, Peng D, Kimura H et al (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  10. Gao S, Zhang Y, Zhang X et al (2023) Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J Alloys Compd 952:170016. https://doi.org/10.1016/j.jallcom.2023.170016

    Article  CAS  Google Scholar 

  11. She L, Zhao B, Yuan M et al (2022) Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv Compos Hybrid Mater 5(4):3012–3022. https://doi.org/10.1007/s42114-022-00530-2

    Article  CAS  Google Scholar 

  12. Guo Y, Ruan K, Wang G et al (2023) Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull 68:1195–1212. https://doi.org/10.1016/j.scib.2023.04.036

    Article  CAS  Google Scholar 

  13. Wang L, Li X, Li Q et al (2019) Oriented polarization tuning Broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15:1900900. https://doi.org/10.1002/smll.201900900

    Article  CAS  Google Scholar 

  14. Wang J, Liu L, Jiao S et al (2020) Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv Funct Mater 30:2002595. https://doi.org/10.1002/adfm.202002595

    Article  CAS  Google Scholar 

  15. Zhang W, Zhang X, Zhu Q et al (2021) High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J Colloid Interface Sci 586:457–468. https://doi.org/10.1016/j.jcis.2020.10.109

    Article  CAS  PubMed  Google Scholar 

  16. Yan Y, Jiang Y, Ng ELL (2023) Progress and opportunities in additive manufacturing of electrically conductive polymer composites. Mater Today Adv 17:100333. https://doi.org/10.1016/j.mtadv.2022.100333

    Article  CAS  Google Scholar 

  17. Hou C, Wang B, Murugadoss V et al (2020) Recent advances in Co3O4 as Anode materials for high-performance lithium-ion batteries. Energy Sci Eng 11:19–30. https://doi.org/10.30919/es8d1128

    Article  CAS  Google Scholar 

  18. Pan F, Wu X, Batalu D et al (2023) Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. APM 2(2):100100. https://doi.org/10.1016/j.apmate.2022.100100

    Article  Google Scholar 

  19. Li Z, Lin H, Xie Y et al (2022) Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J Mater Sci Technol 124:182–192. https://doi.org/10.1016/j.jmst.2022.03.004

    Article  CAS  Google Scholar 

  20. Guo Y, Zhang M, Cheng T et al (2023) Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res 16:9591–9601. https://doi.org/10.1007/s12274-023-5776-x

    Article  CAS  Google Scholar 

  21. Ruan J, Chang Z, Rong H et al (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  22. Li F, Li Q, Kimura H et al (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  CAS  Google Scholar 

  23. Feng S, Zhai F, Su H et al (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30:100950. https://doi.org/10.1016/j.mtphys.2022.100950

    Article  Google Scholar 

  24. Li F, Bi Z, Kimura H et al (2023) Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv Compos Hybrid Mater 6:133. https://doi.org/10.1007/s42114-023-00710-8

    Article  CAS  Google Scholar 

  25. Luo F, Liu D, Cao T et al (2021) Study on broadband microwave absorbing performance of gradient porous structure. J Alloys Compd 4:591–601. https://doi.org/10.1007/s42114-021-00275-4

    Article  CAS  Google Scholar 

  26. Ding J, Wang L, Zhao Y et al (2019) Boosted interfacial polarization from Multishell TiO2@Fe3O4@PPy Heterojunction for enhanced microwave absorption. Small 15:1902885. https://doi.org/10.1002/smll.201902885

    Article  CAS  Google Scholar 

  27. Zhang M, Ling H, Ding S et al (2021) Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 174:248–259. https://doi.org/10.1016/j.carbon.2020.12.005

    Article  CAS  Google Scholar 

  28. Liu T, Liu N, Zhai S et al (2019) Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J Alloys Compd 779:831–843. https://doi.org/10.1016/j.jallcom.2018.11.167

    Article  CAS  Google Scholar 

  29. Wang Q, Wu X, Huang J et al (2022) Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. J Alloys Compd 890:161887. https://doi.org/10.1016/j.jallcom.2021.161887

    Article  CAS  Google Scholar 

  30. Badakhsh A, Han W, Jung SC et al (2019) Preparation of boron nitride-coated carbon fibers and synergistic improvement of thermal conductivity in their polypropylene-matrix composites. Polymers 11(12):2009. https://doi.org/10.3390/polym11122009

  31. Chen B, Zhu Z, Ma J et al (2013) Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J Mater Chem A 1:11355–11367. https://doi.org/10.1039/C3TA11827D

    Article  CAS  Google Scholar 

  32. Zhou W, Long L, Xiao P et al (2019) Comparison in dielectric and microwave absorption properties of SiC coated carbon fibers with PyC and BN interphases. Surf Coat Technol 359:272–277. https://doi.org/10.1016/j.surfcoat.2018.10.104

    Article  CAS  Google Scholar 

  33. Tian C, Du Y, Xu P et al (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099. https://doi.org/10.1021/acsami.5b05259

    Article  CAS  PubMed  Google Scholar 

  34. Cheng T, Guo Y, Xie Y et al (2023) Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon 206:181–191. https://doi.org/10.1016/j.carbon.2023.02.052

    Article  CAS  Google Scholar 

  35. Wang M, Peng M, Weng YX et al (2019) Toward durable and robust superhydrophobic cotton fabric through hydrothermal growth of ZnO for oil/water separation. Cellulose 26:8121–8133. https://doi.org/10.1007/s10570-019-02635-2

    Article  CAS  Google Scholar 

  36. Ahmad S, Khan I, Husain A et al (2020) Electrical conductivity based ammonia sensing properties of polypyrrole/MoS2 Polym. Compos 12:3047. https://doi.org/10.3390/polym12123047

    Article  CAS  Google Scholar 

  37. Liu Z, Zhao Z, Wang Y et al (2017) In situ exfoliated, edge-rich, oxygen‐functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv Mater 29:1606207. https://doi.org/10.1002/adma.201606207

    Article  CAS  Google Scholar 

  38. Wang L, Yang H, Liu X et al (2017) Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem Int Ed 56:1105–1110. https://doi.org/10.1002/anie.201609527

    Article  CAS  Google Scholar 

  39. Ren L, Wang Y, Zhang X et al (2023) Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres. Int J Min Metall Mater 30:504–514. https://doi.org/10.1007/s12613-022-2509-1

    Article  CAS  Google Scholar 

  40. Tian W, Li Y, Zhou J et al (2021) Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces 13:8285–8293. https://doi.org/10.1021/acsami.0c19740

    Article  CAS  PubMed  Google Scholar 

  41. Huyan C, Ding S, Lyu Z et al (2021) Selective removal of Perfluorobutyric Acid using an Electroactive Ion Exchanger based on Polypyrrole@Iron Oxide on Carbon Cloth. ACS Appl Mater Interfaces 13:48500–48507. https://doi.org/10.1021/acsami.1c09374

    Article  CAS  PubMed  Google Scholar 

  42. Liu P, Gao T, He W et al (2023) Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 202:244–253. https://doi.org/10.1016/j.carbon.2022.10.089

    Article  CAS  Google Scholar 

  43. Ding D, Wang Y, Li X et al (2017) Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732. https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  44. Zhang M, Ling H, Wang T et al (2022) An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett 14:157. https://doi.org/10.1007/s40820-022-00900-x

    Article  CAS  Google Scholar 

  45. Hou C, Li F, Kimura H et al (2023) Sodium chloride assisted synthesis of porous magnetic carbon nanocomposites containing cobalt nanoparticles for high-performance electromagnetic wave-absorption. J Mater Res Technol 25:5148–5158. https://doi.org/10.1016/j.jmrt.2023.07.010

    Article  CAS  Google Scholar 

  46. Hu D, Zhao F, Zhang Z et al (2018) Synthesis and magnetic properties of monodisperse CoFe2O4 nanoparticles coated by SiO2. Ceram. Int 44:22462–22466. https://doi.org/10.1016/j.ceramint.2018.09.014

    Article  CAS  Google Scholar 

  47. Wang S, Liu Z, Liu Q et al (2023) Promoting the microwave absorption performance of hierarchical CF@ NiO/Ni composites via phase and morphology evolution. Int J Min 30(3):494–503. https://doi.org/10.1007/s12613-022-2524-2

    Article  CAS  Google Scholar 

  48. Hou C, Yang W, Kimura H et al (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  CAS  Google Scholar 

  49. Bartůněk V, Sedmidubský D, Huber Š et al (2018) Synthesis and properties of nanosized stoichiometric cobalt ferrite spinel. Materials 11:1241. https://doi.org/10.3390/ma11071241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu X, Qin Y, Yan Y et al (2017) The fabrication of CdS/CoFe2O4/rGO photocatalysts to improve the photocatalytic degradation performance under visible light. RSC Adv 7:40673–40681. https://doi.org/10.1039/C7RA07202C

    Article  CAS  Google Scholar 

  51. Zhu X, Zhao H, Niu X et al (2016) A comparative study of carbon nanotube supported MFe2O4 spinels (M = fe, Co, Mn) for amperometric determination of H2O2 at neutral pH values. Microchim Acta 183:2431–2439. https://doi.org/10.1007/s00604-016-1887-3

    Article  CAS  Google Scholar 

  52. Zhao Y, Ma X, Xu P et al (2018) Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate. J Hazard Mater 341:228–237. https://doi.org/10.1016/j.jhazmat.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  53. Ren X, Wang J, Yin H et al (2022) Hierarchical CoFe2O4@PPy hollow nanocubes with enhanced microwave absorption. Appl Surf Sci 575:151752. https://doi.org/10.1016/j.apsusc.2021.151752

    Article  CAS  Google Scholar 

  54. Liu T, Liu N, An Q et al (2019) Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J Alloys Compd 802:445–457. https://doi.org/10.1016/j.jallcom.2019.06.243

    Article  CAS  Google Scholar 

  55. Fu Y, Liao H, Wang B et al (2022) Constructing yolk-shell Co@void@PPy nanocomposites with tunable dielectric properties toward efficient microwave absorption. J Alloys Compd 890:161715. https://doi.org/10.1016/j.jallcom.2019.06.243

    Article  CAS  Google Scholar 

  56. Ge Y, Li C, Waterhouse G I N et al (2021) ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions. Ceram Int 47(2):1728–1739. https://doi.org/10.1016/j.jallcom.2021.161887

    Article  CAS  Google Scholar 

  57. Wang Y, Zhang W, Luo C et al (2016) Fabrication and high-performance microwave absorption of Ni@SnO2@PPy Core-Shell composite. Synth Met 220:347–355. https://doi.org/10.1016/j.synthmet.2016.07.005

    Article  CAS  Google Scholar 

  58. Wang R, Zhu X, Chen P et al (2023) Constructing Core-Shell NiCo2O4@PPy nanocomposites with controllable dielectric properties toward wide-band microwave absorption. J Magn Magn Mater 580:170872. https://doi.org/10.1016/j.jmmm.2023.170872

    Article  CAS  Google Scholar 

  59. Mao D, Zhang Z, Yang M et al (2023) Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. Int J Min Metall Mater 30(3):581–590. https://doi.org/10.1007/s12613-022-2556-7

    Article  CAS  Google Scholar 

Download references

Funding

The work reported here was supported by the National Natural Science Foundation of China under Grant No. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080, Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09, the Natural Science Foundation of Shandong Province under Grant No. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreover, this work was supported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Yuan: Conceptualization, Validation, Formal analysis, Investigation, Datacuration, Writing-original draft, Writing-review & editing. Zhao: Conceptualization, Validation, Formal analysis. Miao: Methodology, Formal analysis, Investigation, Data curation, Writing-review & editing. Wang: Methodology, Investigation. Cui: Formal analysis, Investigation. Tian: Formal analysis, Investigation.Wang: Investigation, Data curation. Zhang: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing-original draft, Writing-review & editing, Visualization. Li: Investigation, Formal analysis, Data curation, Supervision. Meng: Conceptualization, Validation, Formal analysis, Data curation, Writing - original draft, Writing-review & editing, Supervision.

Corresponding authors

Correspondence to Meng Zhang or Zhenjiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 4560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Zhao, W., Miao, Y. et al. Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv Compos Hybrid Mater 7, 70 (2024). https://doi.org/10.1007/s42114-024-00864-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00864-z

Keywords

Navigation