Skip to main content
Log in

Water promoted structural evolution of Ag nanocatalysts supported on alumina

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Water is often involved in many catalytic processes, which can strongly affect structural evolution of catalysts during pretreatments and catalytic reactions. In this work, we demonstrate a promotional effect of H2O on both oxidative dispersion and spontaneous aggregation of Ag nanocatalysts supported on alumina. Ag nanoparticles supported on γ-Al2O3 and Ag nanowires on Al2O3(0001) can be dispersed into nanoclusters via annealing in O2 above 300 °C, which is accelerated by introduction of H2O into the oxidative atmosphere. Furthermore, the formed highly dispersed Ag nanoclusters are subject to spontaneous aggregation in humid atmosphere at room temperature. Ex situ and in situ characterizations in both powder and model catalysts suggest that formation of abundant surface hydroxyls and/or water adlayer on the Al2O3 surface in the H2O-containing atmosphere facilitates the surface migration of Ag species, thus promoting both dispersion and aggregation processes. The aggregation of the supported Ag nanostructures induced by the humid oxidative atmosphere enhances CO oxidation but inhibits selective catalytic reduction of NO with C3H6. This work illustrates the critical role of H2O in structure and catalytic performance of metal nanocatalysts, which can be widely present in heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strizhak, P. E. Nanosize effects in heterogeneous catalysis. Theor. Exp. Chem. 2013, 49, 2–21.

    CAS  Google Scholar 

  2. Bond, G. C. The origins of particle size effects in heterogeneous catalysis. Surf. Sci. 1985, 156, 966–981.

    CAS  Google Scholar 

  3. Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

    CAS  Google Scholar 

  4. Xu, L. L.; Chen, J. X.; Ma, Q.; Chao, D. Y.; Zhu, X. Y.; Liu, L.; Wang, J.; Fang, Y. X.; Dong, S. J. Critical evaluation of the glucose oxidase-like activity of gold nanoparticles stabilized by different polymers. Nano Res. 2023, 16, 4758–4766.

    CAS  Google Scholar 

  5. Khodakov, A. Y. Fischer-tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 2009, 144, 251–257.

    CAS  Google Scholar 

  6. Da Silva, A. L. M.; Den Breejen, J. P.; Mattos, L. V.; Bitter, J. H.; De Jong, K. P.; Noronha, F. B. Cobalt particle size effects on catalytic performance for ethanol steam reforming-smaller is better. J. Catal. 2014, 318, 67–74.

    CAS  Google Scholar 

  7. Wei, J. M.; Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 2004, 108, 4094–4103.

    CAS  Google Scholar 

  8. Xiang, G. L.; Wang, Y. G. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Res. 2022, 15, 3812–3817.

    CAS  Google Scholar 

  9. Che, M.; Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 1989, 36, 55–172.

    CAS  Google Scholar 

  10. Wang, F.; Li, Z.; Wang, H. H.; Chen, M.; Zhang, C. B.; Ning, P.; He, H. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 2022, 15, 452–456.

    CAS  Google Scholar 

  11. Liu, Y. M.; Tsunoyama, H.; Akita, T.; Xie, S. H.; Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: Size effect in the sub-2 nm regime. ACS Catal. 2011, 1, 2–6.

    CAS  Google Scholar 

  12. Akhade, S. A.; Winkelman, A.; Dagle, V. L.; Kovarik, L.; Yuk, S. F.; Lee, M. S.; Zhang, J.; Padmaperuma, A. B.; Dagle, R. A.; Glezakou, V. A. et al. Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts. J. Catal. 2020, 386, 30–38.

    CAS  Google Scholar 

  13. Somorjai, G. A.; Li, Y. M. Selective nanocatalysis of organic transformation by metals: Concepts, model systems, and instruments. Top. Catal. 2010, 53, 832–847.

    CAS  Google Scholar 

  14. Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

    CAS  Google Scholar 

  15. Plessow, P. N.; Abild-Pedersen, F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal. 2016, 6, 7098–7108.

    CAS  Google Scholar 

  16. Yan, D. X.; Chen, J.; Jia, H. P. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem., Int. Ed. 2020, 59, 13562–13567.

    CAS  Google Scholar 

  17. Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening. . Acc. Chem. Res. 2013, 46, 1720–1730.

    CAS  Google Scholar 

  18. Tanabe, T.; Nagai, Y.; Dohmae, K.; Sobukawa, H.; Shinjoh, H. Sintering and redispersion behavior of Pt on Pt/MgO. J. Catal. 2008, 257, 117–124.

    CAS  Google Scholar 

  19. Goodman, E. D.; Johnston-Peck, A. C.; Dietze, E. M.; Wrasman, C. J.; Hoffman, A. S.; Abild-Pedersen, F.; Bare, S. R.; Plessow, P. N.; Cargnello, M. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2019, 2, 748–755.

    CAS  Google Scholar 

  20. Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

    CAS  Google Scholar 

  21. Peláez, R. J.; Castelo, A.; Afonso, C. N.; Borrás, A.; Espinós, J. P.; Riedel, S.; Leiderer, P.; Boneberg, J. Enhanced reactivity and related optical changes of Ag nanoparticles on amorphous Al2O3 supports. Nanotechnology 2013, 24, 365702.

    Google Scholar 

  22. Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L. et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci. Adv. 2022, 8, eabm3629.

    Google Scholar 

  23. Huang, W. X.; Johnston-Peck, A. C.; Wolter, T.; Yang, W. D.; Xu, L.; Oh, J.; Reeves, B. A.; Zhou, C. S.; Holtz, M. E.; Herzing, A. A. et al. Steam-created grain boundaries for methane C-H activation in palladium catalysts. Science 2021, 373, 1518–1523.

    CAS  Google Scholar 

  24. Goguet, A.; Burch, R.; Chen, Y.; Hardacre, C.; Hu, P.; Joyner, R. W.; Meunier, F. C.; Mun, B. S.; Thompsett, D.; Tibiletti, D. Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction. J. Phys. Chem. C 2007, 111, 16927–16933.

    CAS  Google Scholar 

  25. Yang, J. J.; Huang, Y. K.; Qi, H. F.; Zeng, C. B.; Jiang, Q. K.; Cui, Y. T.; Su, Y.; Du, X. R.; Pan, X. L.; Liu, X. Y. et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 2022, 13, 4244.

    CAS  Google Scholar 

  26. Liu, A. N.; Liu, L. C.; Cao, Y.; Wang, J. M.; Si, R.; Gao, F.; Dong, L. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 2019, 9, 9840–9851.

    CAS  Google Scholar 

  27. Song, J.; Wang, Y. L.; Walter, E. D.; Washton, N. M.; Mei, D. H.; Kovarik, L.; Engelhard, M. H.; Prodinger, S.; Wang, Y.; Peden, C. H. F. et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal. 2017, 7, 8214–8227.

    CAS  Google Scholar 

  28. Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.

    CAS  Google Scholar 

  29. Wang, H. K.; Tang, H. H.; Liang, J. J.; Chen, Y. S. Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv. Funct. Mater. 2018, 28, 1804479.

    Google Scholar 

  30. Sayah, E.; Brouri, D.; Wu, Y. H.; Musi, A.; Da Costa, P.; Massiani, P. A TEM and UV-visible study of silver reduction by ethanol in Agalumina catalysts. Appl. Catal. A: Gen. 2011, 406, 94–101.

    CAS  Google Scholar 

  31. Li, R. T.; Xu, X. Y.; Zhu, B. E.; Li, X. Y.; Ning, Y. X.; Mu, R. T.; Du, P. F.; Li, M. W.; Wang, H. K.; Liang, J. J. et al. In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nat. Commun. 2021, 12, 1406.

    CAS  Google Scholar 

  32. Chaieb, T.; Brouri, D.; Casale, S.; Krafft, J. M.; Da Silva, T.; Thomas, C.; Delannoy, L.; Louis, C. On the origin of the changes in color of Ag/Al2O3 catalysts during storage. Res. Chem. Intermed. 2019, 45, 5877–5905.

    CAS  Google Scholar 

  33. Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

    CAS  Google Scholar 

  34. Deng, H.; Yu, Y. B.; Liu, F. D.; Ma, J. Z.; Zhang, Y.; He, H. Nature of Ag species on Ag/γ-Al2O3: A combined experimental and theoretical study. ACS Catal. 2014, 4, 2776–2784.

    CAS  Google Scholar 

  35. Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlögl, R.; Frei, E. Supported Ag nanoparticles and clusters for CO oxidation: Size effects and influence of the silver-oxygen interactions. ACS Appl. Nano Mater. 2019, 2, 2909–2920.

    CAS  Google Scholar 

  36. Shimizu, K. I.; Sawabe, K.; Satsuma, A. Self-regenerative silver nanocluster catalyst for CO oxidation. ChemCatChem 2011, 3, 1290–1293.

    CAS  Google Scholar 

  37. Kubota, H.; Mine, S.; Toyao, T.; Maeno, Z.; Shimizu, K. I. Redox-driven reversible structural evolution of isolated silver atoms anchored to specific sites on γ-Al2O3. ACS Catal. 2022, 12, 544–559.

    CAS  Google Scholar 

  38. Richter, M.; Abramova, A.; Bentrup, U.; Fricke, R. Proof of reversible Ag+/Ag0 redox transformation on mesoporous alumina by in situ UV-vis spectroscopy. J. Appl. Spectrosc. 2004, 71, 400–403.

    CAS  Google Scholar 

  39. Ouyang, R. H.; Liu, J. X.; Li, W. X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771.

    CAS  Google Scholar 

  40. Szanyi, J.; Kwak, J. H.; Chimentao, R. J.; Peden, C. H. F. Effect of H2O on the adsorption of NO2 on γ-Al2O3: An in situ FTIR/MS study. J. Phys. Chem. C 2007, 111, 2661–2669.

    CAS  Google Scholar 

  41. Max, J. J.; Chapados, C. Isotope effects in liquid water by infrared spectroscopy. J. Chem. Phys. 2002, 116, 4626–4642.

    CAS  Google Scholar 

  42. Chakarova, K.; Drenchev, N.; Mihaylov, M.; Nikolov, P.; Hadjiivanov, K. OH/OD isotopic shift factors of isolated and H-bonded surface silanol groups. J. Phys. Chem. C 2013, 117, 5242–5248.

    CAS  Google Scholar 

  43. Salmeron, M.; Bluhm, H.; Tatarkhanov, N.; Ketteler, G.; Shimizu, T. K.; Mugarza, A.; Deng, X. Y.; Herranz, T.; Yamamoto, S.; Nilsson, A. Water growth on metals and oxides: Binding, dissociation and role of hydroxyl groups. Faraday Discuss. 2009, 141, 221–229.

    CAS  Google Scholar 

  44. Kraushofer, F.; Haager, L.; Eder, M.; Rafsanjani-Abbasi, A.; Jakub, Z.; Franceschi, G.; Riva, M.; Meier, M.; Schmid, M.; Diebold, U. et al. Single Rh adatoms stabilized on α-Fe2O3(1102) by coadsorbed water. ACS Energy Lett. 2022, 7, 375–380.

    CAS  Google Scholar 

  45. Liu, J. Y.; Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169–2175.

    CAS  Google Scholar 

  46. Shan, Y. L.; He, G. Z.; Du, J. P.; Sun, Y.; Liu, Z. Q.; Fu, Y.; Liu, F. D.; Shi, X. Y.; Yu, Y. B.; He, H. Strikingly distinctive NH3-SCR behavior over Cu-SSZ-13 in the presence of NO2. Nat. Commun. 2022, 13, 4606.

    CAS  Google Scholar 

  47. Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2008, 140, 9558–9565.

    Google Scholar 

  48. Wan, Q.; Wei, F. F.; Wang, Y. Q.; Wang, F. T.; Zhou, L. S.; Lin, S.; Xie, D. Q.; Guo, H. Single atom detachment from Cu clusters, and diffusion and trapping on CeO2(111): Implications in Ostwald ripening and atomic redispersion. Nanoscale 2018, 10, 17893–17901.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFA1502800), the National Natural Science Foundation of China (Nos. 91945302, 21825203, and 22288201), and Photon Science Center for Carbon Neutrality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, R., Wang, F. et al. Water promoted structural evolution of Ag nanocatalysts supported on alumina. Nano Res. 16, 9107–9115 (2023). https://doi.org/10.1007/s12274-023-5735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5735-6

Keywords

Navigation