Skip to main content
Log in

Opportunities and challenges of strain engineering for advanced electrocatalyst design

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalysis is becoming more and more important in energy conversion and storage due to rising energy demands, increasing carbon dioxide emissions, and impending climate change. The design and synthesis of high-performance electrocatalysts are the spotlights of electrocatalysis. Among many design methodologies reported, strain engineering has gained growing attention because it can change the atomic arrangement and lattice structure of electrocatalysts. However, strain engineering remains to be problematic in regulating the properties of electrocatalysts. This review discusses the strain effect tactics to regulate metal and non-metal electrocatalysts, including three sections focusing on strain categorization, strain regulation mechanism, and applications in electrocatalysis, respectively. Finally, the current challenges and an outlook of strain engineering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, W.; Jiang, B. M.; Wang, Z.; Xiao, W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci. Adv. 2020, 6, eaay9278.

    CAS  Google Scholar 

  2. Demski, C.; Poortinga, W.; Whitmarsh, L.; Böhm, G.; Fisher, S.; Steg, L.; Umit, R.; Jokinen, P.; Pohjolainen, P. National context is a key determinant of energy security concerns across europe. Nat. Energy 2018, 3, 882–888.

    Google Scholar 

  3. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  4. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    CAS  Google Scholar 

  5. Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

    CAS  Google Scholar 

  6. Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.

    Google Scholar 

  7. Fu, G. D.; Kang, X. M.; Zhang, Y.; Yang, X. Q.; Wang, L.; Fu, X. Z.; Zhang, J. J.; Luo, J. L.; Liu, J. W. Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nanomicro Lett. 2022, 14, 200.

    CAS  Google Scholar 

  8. Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

    CAS  Google Scholar 

  9. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  10. Huang, X. Y.; Li, L. H.; Zhao, S. F.; Tong, L.; Li, Z.; Peng, Z. R.; Lin, R. F.; Zhou, L.; Peng, C.; Xue, K. H. et al. MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nanomicro Lett. 2022, 14, 174.

    CAS  Google Scholar 

  11. Wang, G. J.; Sun, Y. Z.; Zhao, Y. D.; Zhang, Y.; Li, X. H.; Fan, L. Z.; Li, Y. C. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Res. 2022, 15, 8771–8782.

    CAS  Google Scholar 

  12. Liu, G. G.; Zhou, W.; Ji, Y. R.; Chen, B.; Fu, G. T.; Yun, Q. B.; Chen, S. M.; Lin, Y. X.; Yin, P. F.; Cui, X. Y. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270.

    CAS  Google Scholar 

  13. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    CAS  Google Scholar 

  14. Kao, C. R.; Yeh, A. H.; Chen, B. H.; Lyu, L. M.; Chuang, Y. C.; Sneed, B. T.; Kuo, C. H. Insights into transformation of icosahedral PdRu nanocrystals into lattice-expanded nanoframes with strain enhancement in electrochemical redox reactions. Chem. Mater. 2022, 34, 2282–2291.

    CAS  Google Scholar 

  15. Guo, X. L.; Zheng, T. X.; Ji, G. P.; Hu, N.; Xu, C. H.; Zhang, Y. X. Core/shell design of efficient electrocatalysts based on NiCo2O4 nanowires and NiMn LDH nanosheets for rechargeable zinc-air batteries. J. Mater. Chem. A 2018, 6, 10243–10252.

    CAS  Google Scholar 

  16. Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

    CAS  Google Scholar 

  17. Shen, C. Q.; Wang, P. T.; Li, L. G.; Huang, X. Q.; Shao, Q. Phase and structure modulating of bimetallic Cu/In nanoparticles realizes efficient electrosynthesis of syngas with wide CO/H2 ratios. Nano Res. 2022, 15, 528–534.

    CAS  Google Scholar 

  18. Jansonius, R. P.; Schauer, P. A.; Dvorak, D. J.; MacLeod, B. P.; Fork, D. K.; Berlinguette, C. P. Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem., Int. Ed. 2020, 59, 12192–12198.

    CAS  Google Scholar 

  19. Yan, K.; Kim, S. K.; Khorshidi, A.; Guduru, P. R.; Peterson, A. A. High elastic strain directly tunes the hydrogen evolution reaction on tungsten carbide. J. Phys. Chem. C 2017, 121, 6177–6183.

    CAS  Google Scholar 

  20. Zeng, B. F.; Wei, J. Y.; Zhang, X. G.; Liang, Q. M.; Hu, S.; Wang, G.; Lei, Z. C.; Zhao, S. Q.; Zhang, H. W.; Shi, J. et al. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem. Sci. 2022, 13, 7765–7772.

    CAS  Google Scholar 

  21. Muralidharan, N.; Brock, C. N.; Cohn, A. P.; Schauben, D.; Carter, R. E.; Oakes, L.; Walker, D. G.; Pint, C. L. Tunable mechanochemistry of lithium battery electrodes. ACS Nano 2017, 11, 6243–6251.

    CAS  Google Scholar 

  22. Deng, Q. B.; Gopal, V.; Weissmüller, J. Less noble or more noble: How strain affects the binding of oxygen on gold. Angew. Chem., Int. Ed. 2015, 54, 12981–12985.

    CAS  Google Scholar 

  23. Wang, Y. X.; Yao, S. K.; Liao, P. L.; Jin, S. Y.; Wang, Q. X.; Kim, M. J.; Cheng, G. J.; Wu, W. Z. Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 2020, 32, e2002342.

    Google Scholar 

  24. Zeng, B. F.; Zou, Y. L.; Wang, G.; Hong, W. J.; Tian, Z. Q.; Yang, Y. Quantitative studies of single-molecule chemistry using conductance measurement. Nano Today 2022, 47, 101660.

    CAS  Google Scholar 

  25. Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698–1703.

    Google Scholar 

  26. Yan, K.; Maark, T. A.; Khorshidi, A.; Sethuraman, V. A.; Peterson, A. A.; Guduru, P. R. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 6175–6181.

    CAS  Google Scholar 

  27. Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

    CAS  Google Scholar 

  28. Adit Maark, T.; Peterson, A. A. Understanding strain and ligand effects in hydrogen evolution over Pd (111) surfaces. J. Phys. Chem. C 2014, 118, 4275–4281.

    Google Scholar 

  29. Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

    CAS  Google Scholar 

  30. Qiao, W.; Xu, W.; Xu, X. Y.; Wu, L. Q.; Yan, S. M.; Wang, D. H. Construction of active orbital via single-atom cobalt anchoring on the surface of 1T-MoS2 basal plane toward efficient hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 2315–2322.

    CAS  Google Scholar 

  31. Zou, Y. L.; Liang, Q. M.; Lu, T. G.; Li, Y. G.; Zhao, S. Q.; Gao, J.; Yang, Z. X.; Feng, A. N.; Shi, J.; Hong, W. J. et al. A van der Waals heterojunction strategy to fabricate layer-by-layer single-molecule switch. Sci. Adv. 2023, 9, eadf0425.

    CAS  Google Scholar 

  32. Zeng, B. F.; Deng, R.; Zou, Y. L.; Huo, C. A.; Wang, J. Y.; Yang, W. M.; Liang, Q. M.; Qiu, S. J.; Feng, A. N.; Shi, J. et al. Optical trapping of a single molecule of length sub-1 nm in solution. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202202318.

  33. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17509.

    Google Scholar 

  34. Sneed, B. T.; Young, A. P.; Tsung, C. K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 2015, 7, 12248–12265.

    CAS  Google Scholar 

  35. Li, G. Q.; Chen, Z. H.; Li, Y. F.; Zhang, D.; Yang, W. T.; Liu, Y. Y.; Cao, L. Y. Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt. ACS Nano 2020, 14, 1707–1714.

    CAS  Google Scholar 

  36. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    CAS  Google Scholar 

  37. Wang, A. Q.; Zhao, Z. L.; Hu, D.; Niu, J. F.; Zhang, M.; Yan, K.; Lu, G. Tuning the oxygen evolution reaction on a nickel-iron alloy via active straining. Nanoscale 2019, 11, 426–430.

    CAS  Google Scholar 

  38. Yang, Y. Y.; Maark, T. A.; Peterson, A.; Kumar, S. Elastic strain effects on catalysis of a PdCuSi metallic glass thin film. Phys. Chem. Chem. Phys. 2015, 17, 1746–1754.

    CAS  Google Scholar 

  39. Sethuraman, V. A.; Vairavapandian, D.; Lafouresse, M. C.; Adit Maark, T.; Karan, N.; Sun, S. H.; Bertocci, U.; Peterson, A. A.; Stafford, G. R.; Guduru, P. R. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt. J. Phys. Chem. C 2015, 119, 19042–19052.

    CAS  Google Scholar 

  40. Du, M. S.; Cui, L. S.; Cao, Y.; Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 2015, 137, 7397–7403.

    CAS  Google Scholar 

  41. Guan, Q. Q.; Zhu, C. W.; Lin, Y.; Vovk, E. I.; Zhou, X. H.; Yang, Y.; Yu, H. C.; Cao, L. N.; Wang, H. W.; Zhang, X. H. et al. Bimetallic monolayer catalyst breaks the activity-selectivity tradeoff on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840–849.

    CAS  Google Scholar 

  42. Zhang, J. M.; Xu, W. C.; Liu, Y.; Hung, S. F.; Liu, W.; Lam, Z.; Tao, H. B.; Yang, H. B.; Cai, W. Z.; Xiao, H. et al. In situ precise tuning of bimetallic electronic effect for boosting oxygen reduction catalysis. Nano Lett. 2021, 21, 7753–7760.

    CAS  Google Scholar 

  43. Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

    CAS  Google Scholar 

  44. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.

    CAS  Google Scholar 

  45. Chattot, R.; Martens, I.; Mirolo, M.; Ronovsky, M.; Russello, F.; Isern, H.; Braesch, G.; Hornberger, E.; Strasser, P.; Sibert, E. et al. Electrochemical strain dynamics in noble metal nanocatalysts. J. Am. Chem. Soc. 2021, 143, 17068–17078.

    CAS  Google Scholar 

  46. Yuan, A. T.; Zhang, H. X.; Deng, Q. B. A simple mechanical method to modulate the electrochemical electrosorption processes at metal surfaces. Molecules 2019, 24, 3662.

    CAS  Google Scholar 

  47. Deng, Q. B.; Smetanin, M.; Weissmüller, J. Mechanical modulation of reaction rates in electrocatalysis. J. Catal. 2014, 309, 351–361.

    CAS  Google Scholar 

  48. Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

    CAS  Google Scholar 

  49. Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

    CAS  Google Scholar 

  50. Wang, C. Y.; Sang, X. H.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 2017, 17, 5526–5532.

    CAS  Google Scholar 

  51. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    CAS  Google Scholar 

  52. Lim, B.; Wang, J. G.; Camargo, P. H. C.; Jiang, M. J.; Kim, M. J.; Xia, Y. N. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Lett. 2008, 8, 2535–2540.

    CAS  Google Scholar 

  53. Jiang, M. J.; Lim, B.; Tao, J.; Camargo, P. H. C.; Ma, C.; Zhu, Y. M.; Xia, Y. N. Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale 2010, 2, 2406–2411.

    CAS  Google Scholar 

  54. Xiao, X. Y.; Jeong, H.; Song, J.; Ahn, J. P.; Kim, J.; Yu, T. Facile synthesis of Pd@Pt core-shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation. Chem. Commun. 2019, 55, 11952–11955.

    CAS  Google Scholar 

  55. Meng, N. N.; Ma, X. M.; Wang, C. H.; Wang, Y. T.; Yang, R.; Shao, J.; Huang, Y. M.; Xu, Y.; Zhang, B.; Yu, Y. Oxide-derived core–shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 2022, 16, 9095–9104.

    CAS  Google Scholar 

  56. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493–497.

    CAS  Google Scholar 

  57. Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.

    CAS  Google Scholar 

  58. Jiao, L.; Liu, E. S.; Hwang, S.; Mukerjee, S.; Jia, Q. Y. Compressive strain reduces the hydrogen evolution and oxidation reaction activity of platinum in alkaline solution. ACS Catal. 2021, 11, 8165–8173.

    CAS  Google Scholar 

  59. Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

    CAS  Google Scholar 

  60. He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

    CAS  Google Scholar 

  61. Tang, C. Y.; Zhang, N.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 2019, 19, 1336–1342.

    CAS  Google Scholar 

  62. Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

    CAS  Google Scholar 

  63. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    CAS  Google Scholar 

  64. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    CAS  Google Scholar 

  65. Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

    Google Scholar 

  66. Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

    CAS  Google Scholar 

  67. Muscher, P. K.; Rehn, D. A.; Sood, A.; Lim, K.; Luo, D.; Shen, X. Z.; Zajac, M.; Lu, F. Y.; Mehta, A.; Li, Y. et al. Highly efficient uniaxial in-plane stretching of a 2D material via ion insertion. Adv. Mater. 2021, 33, 2101875.

    CAS  Google Scholar 

  68. Li, Y.; Duerloo, K. A. N.; Reed, E. J. Strain engineering in monolayer materials using patterned adatom adsorption. Nano Lett. 2014, 14, 4299–4305.

    CAS  Google Scholar 

  69. Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

    CAS  Google Scholar 

  70. Huang, Y. Y.; Zhu, Y. C.; Fu, H. Y.; Ou, M. Y.; Hu, C. C.; Yu, S. J.; Hu, Z. W.; Chen, C. T.; Jiang, G.; Gu, H. K. et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V. Angew. Chem., Int. Ed. 2021, 60, 4682–4688.

    CAS  Google Scholar 

  71. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

    CAS  Google Scholar 

  72. Yu, L. P.; Ruzsinszky, A.; Perdew, J. P. Bending two-dimensional materials to control charge localization and Fermi-level shift. Nano Lett. 2016, 76, 2444–2449.

    Google Scholar 

  73. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 75, 48–53.

    Google Scholar 

  74. Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

    Google Scholar 

  75. Wang, P. C.; Wang, R. Z.; Xu, Q.; Xu, Z. A.; Wan, L.; Lin, Y. Q.; Liu, P. F.; Wang, B. G. Role of the interfacial effect between the substrate and Co(OH)2 layer in electrochemical oxygen evolution. ACS Appl. Energy Mater. 2021, 4, 9487–9497.

    CAS  Google Scholar 

  76. Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

    CAS  Google Scholar 

  77. Wang, J. C.; He, J. J.; Omololu Odunmbaku, G.; Zhao, S.; Gou, Q. Z.; Han, G.; Xu, C. H.; Frauenheim, T.; Li, M. Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chem. Eng. J. 2021, 414, 128811.

    CAS  Google Scholar 

  78. Liang, J. W.; Ma, S. X.; Li, J.; Wang, Y. G.; Wu, J. L.; Zhang, Q.; Liu, Z.; Yang, Z. H.; Qu, K. G.; Cai, W. W. Boosting the acidic electrocatalytic nitrogen reduction performance of MoS2 by strain engineering. J. Mater. Chem. A 2020, 8, 10426–10432.

    CAS  Google Scholar 

  79. Wang, W. Y.; Meng, J.; Hu, Y. J.; Wang, J. J.; Li, Q. X.; Yang, J. L. Thgraphene: A novel two-dimensional carbon allotrope as a potential multifunctional material for electrochemical water splitting and potassium-ion batteries. J. Mater. Chem. A 2022, 10, 9848–9857.

    CAS  Google Scholar 

  80. Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

    CAS  Google Scholar 

  81. Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

    CAS  Google Scholar 

  82. Wang, Y. X.; Zhang, H. L.; An, P.; Wu, H. S.; Jia, J. F. Effect of potassium on methanol steam reforming on the Cu (111) and Cu (110) surfaces: A DFT study. J. Phys. Chem. C 2021, 125, 20905–20918.

    CAS  Google Scholar 

  83. Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Marković, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 2010, 9, 998ć1003.

    Google Scholar 

  84. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    CAS  Google Scholar 

  85. Chen, Y. L.; Cheng, T.; Goddard III, W. A. Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J. Am. Chem. Soc. 2020, 142, 8625–8632.

    CAS  Google Scholar 

  86. Han, G. K.; Zhang, X.; Liu, W.; Zhang, Q. H.; Wang, Z. Q.; Cheng, J.; Yao, T.; Gu, L.; Du, C. Y.; Gao, Y. Z. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 2021, 12, 6335.

    CAS  Google Scholar 

  87. Moreno, J.; Aspera, S.; David, M.; Kasai, H. A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon 2015, 94, 936–941.

    CAS  Google Scholar 

  88. Chai, G. L.; Guo, Z. X. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 elecrrochemical reduction. Chem. Sci. 2016, 7, 1268–1275.

    CAS  Google Scholar 

  89. Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.

    CAS  Google Scholar 

  90. Liu, F. Z.; Wu, C.; Yang, S. C. Strain and ligand effects on CO2 reduction reactions over Cu-metal heterostructure catalysts. J. Phys. Chem. C 2017, 121, 22139–22146.

    CAS  Google Scholar 

  91. Adit Maark, T.; Nanda, B. R. K. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper-nickel heterostructures. J. Phys. Chem. C 2017, 121, 4496–4504.

    CAS  Google Scholar 

  92. Schlapka, A.; Lischka, M.; Groβ, A.; Käsberger, U.; Jakob, P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001). Phys. Rev. Lett. 2003, 91, 016101.

    CAS  Google Scholar 

  93. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    CAS  Google Scholar 

  94. Gauthier, Y.; Schmid, M.; Padovani, S.; Lundgren, E.; Bš, V.; Kresse, G.; Redinger, J.; Varga, P. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Phys. Rev. Lett. 2001, 87, 036103.

    CAS  Google Scholar 

  95. Suo, Y. G.; Zhuang, L.; Lu, J. T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem., Int. Ed. 2007, 46, 2862–2864.

    CAS  Google Scholar 

  96. Li, X. L.; Liu, W.; Zhang, M. Y.; Zhong, Y. R.; Weng, Z.; Mi, Y. Y.; Zhou, Y.; Li, M.; Cha, J. J.; Tang, Z. Y. et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Lett. 2017, 17, 2057–2063.

    CAS  Google Scholar 

  97. Xue, S. Y.; Chen, G. Y.; Li, F.; Zhao, Y. H.; Zeng, Q. W.; Peng, J. H.; Shi, F. L.; Zhang, W. C.; Wang, Y. Z.; Wu, J. B. et al. Understanding of strain-induced electronic structure changes in metal-based electrocatalysts: Using Pd@Pt core-shell nanocrystals as an ideal platform. Small 2021, 17, e2100559.

    Google Scholar 

  98. Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21899–21904.

    CAS  Google Scholar 

  99. Zhang, J. G.; Fan, T. T.; Huang, P. P.; Lian, X. Y.; Guo, Y. T.; Chen, Z.; Yi, X. D. Electro-reconstruction-induced strain regulation and synergism of Ag-In-S toward highly efficient CO2 electrolysis to formate. Adv. Funct. Mater. 2022, 32, 2113075.

    CAS  Google Scholar 

  100. Liang, Z. X.; Song, L.; Deng, S. Q.; Zhu, Y. M.; Stavitski, E.; Adzic, R. R.; Chen, J. Y.; Wang, J. X. Direct 12-electron oxidation of ethanol on a ternary Au (core)-PtIr (shell) electrocatalyst. J. Am. Chem. Soc. 2019, 141, 9629–9636.

    CAS  Google Scholar 

  101. Cheng, C.; Lührs, L. Robust metallic actuators based on nanoporous gold rapidly dealloyed from gold-nickel precursors. Adv. Funct. Mater. 2021, 31, 2107241.

    CAS  Google Scholar 

  102. Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

    CAS  Google Scholar 

  103. Hou, Z. Q.; Sun, Z.; Cui, C. H.; Zhu, D. M.; Yang, Y. N.; Zhang, T. Ru coordinated ZnIn2S4 triggers local lattice-strain engineering to endow high-efficiency electrocatalyst for advanced Zn-air batteries. Adv. Funct. Mater 2022, 2110572.

  104. Liu, N. Z.; Wang, R. X.; Gao, S. J.; Zhang, R. F.; Fan, F. R.; Ma, Y. H.; Luo, X. L.; Ding, D.; Wu, W. Z. High-performance piezo-electrocatalytic sensing of ascorbic acid with nanostructured wurtzite zinc oxide. Adv. Mater. 2021, 33, 2105697.

    CAS  Google Scholar 

  105. Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

    CAS  Google Scholar 

  106. Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

    CAS  Google Scholar 

  107. Wu, W. Z.; Niu, C. Y.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew. Chem., Int. Ed. 2019, 58, 2029–2033.

    CAS  Google Scholar 

  108. Lee, J. K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G. T.; Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S. et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494–3500.

    CAS  Google Scholar 

  109. Lee, J. H.; Jang, W. S.; Han, S. W.; Baik, H. K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 2014, 30, 9866–9873.

    CAS  Google Scholar 

  110. Rhuy, D.; Lee, Y.; Kim, J. Y.; Kim, C.; Kwon, Y.; Preston, D. J.; Kim, I. S.; Odom, T. W.; Kang, K.; Lee, D. et al. Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 2022, 22, 5742–5750.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. T2222002, 21973079, 22032004, and 21991130) and the Natural Science Foundation of Fujian Province (No. 2021J06008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, QM., Wang, X., Wan, XW. et al. Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Res. 16, 8655–8669 (2023). https://doi.org/10.1007/s12274-023-5641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5641-y

Keywords

Navigation