Skip to main content
Log in

Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The thermodynamically favorable electrocatalytic oxidation coupled with hydrogen evolution reaction (HER) is considered as a sustainable and promising technique. Nonetheless, it remains a great challenge due to the lack of simple, cheap, and high-efficient electrocatalysts. Here, we successfully develop a simple and scalable electro-deposition and subsequent phosphorization route to fabricate Ni-doped Co2P (Ni-Co2P) nanosheets catalyst using the in-situ released Ni species from defective Ni foam as metal source. Impressively, the as-synthesized Ni-Co2P catalyst exhibits excellent electrochemical 5-hydroxymethylfurfural oxidation reaction (HOR) performance with > 99% 2,5-furandicarboxylic acid yield and > 97% Faradaic efficiency at an ultralow potential of 1.29 V vs. reversible hydrogen electrode (RHE). Experimental characterization and theoretical calculation reveal that the atomically doped Ni species can enhance the adsorption of reactant and thus lower the reaction energy barriers. By coupling the electrocatalytic HOR with HER, the employed two-electrode system using Ni-Co2P and commercial Ni foam as anode and cathode, respectively, exhibits a low cell voltage of 1.53 V to drive a current density of 10 mA·cm−2, which is 90 mV lower than that of pure water splitting. This work provides a facile and efficient approach for the preparation of high-performance earth-abundant electrocatalysts toward the concurrent production of H2 and value-added chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

    CAS  Google Scholar 

  2. Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

    CAS  Google Scholar 

  3. Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

    CAS  Google Scholar 

  4. Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

    CAS  Google Scholar 

  5. Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

    CAS  Google Scholar 

  6. Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

    CAS  Google Scholar 

  7. Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

    CAS  Google Scholar 

  8. Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 2020, 142, 21538–21547.

    CAS  Google Scholar 

  9. Cha, H. G.; Choi, K. S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 2015, 7, 328–333.

    CAS  Google Scholar 

  10. Xiang, M.; Xu, Z. H.; Wang, J. H.; Yang, X. Q.; Yan, Z. X. Accelerating H2 evolution by anodic semi-dehydrogenation of tetrahydroisoquinolines in water over Co3O4 nanoribbon arrays decorated nickel foam. Chem.—Eur. J. 2021, 27, 7502–7506.

    CAS  Google Scholar 

  11. Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.

    CAS  Google Scholar 

  12. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

    CAS  Google Scholar 

  13. Park, M.; Gu, M. S.; Kim, B. S. Tailorable electrocatalytic 5-hydroxymethylfurfural oxidation and H2 production: Architecture-performance relationship in bifunctional multilayer electrodes. ACS Nano 2020, 14, 6812–6822.

    CAS  Google Scholar 

  14. Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Y. B.; Li, Y. Y.; Zhang, N. N.; Chen, W.; Zhou, L.; Lin, H. Z. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 2020, 63, 980–986.

    CAS  Google Scholar 

  15. Kang, M. J.; Park, H.; Jegal, J.; Hwang, S. Y.; Kang, Y. S.; Cha, H. G. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl. Catal. B: Environ. 2019, 242, 85–91.

    CAS  Google Scholar 

  16. Yang, Y. C.; Mu, T. C. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 2021, 23, 4228–4254.

    CAS  Google Scholar 

  17. Zhou, Y. F.; Shen, Y.; Luo, X. L. Critical practices in conducting electrochemical conversion of 5-hydroxymethylfurfural. Catal. Sci. Technol. 2021, 11, 4882–4888.

    CAS  Google Scholar 

  18. Chen, X. L.; Zhong, X.; Yuan, B. W.; Li, S. Q.; Gu, Y. B.; Zhang, Q. Q.; Zhuang, G. L.; Li, X. N.; Deng, S. W.; Wang, J. G. Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chem. 2019, 21, 578–588.

    CAS  Google Scholar 

  19. Liu, W. J.; Dang, L. N.; Xu, Z. R.; Yu, H. Q.; Jin, S.; Huber, G. W. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 2018, 8, 5533–5541.

    CAS  Google Scholar 

  20. Huang, X.; Song, J. L.; Hua, M. L.; Xie, Z. B.; Liu, S. S.; Wu, T. B.; Yang, G. Y.; Han, B. X. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancy. Green Chem. 2020, 22, 843–849.

    CAS  Google Scholar 

  21. Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Huang, Y. C.; Li, Y. F.; Chen, J.; Zou, Y. Q.; Wang, S. Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, 2007056.

    CAS  Google Scholar 

  22. Luo, R. P.; Li, Y. Y.; Xing, L. X.; Wang, N.; Zhong, R. Y.; Qian, Z. Y.; Du, C. Y.; Yin, G. P.; Wang, Y. C.; Du, L. A dynamic Ni(OH)2-NiOOH/NiFeP heterojunction enabling high-performance E-upgrading of hydroxymethylfurfural. Appl. Catal. B: Environ. 2022, 311, 121357.

    CAS  Google Scholar 

  23. You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913–9917.

    CAS  Google Scholar 

  24. Sun, Y.; Wang, J.; Qi, Y. F.; Li, W. J.; Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2catalyst: Promising for H2 production under industrial-level current density. Adv. Sci. 2022, 9, 2200957.

    CAS  Google Scholar 

  25. You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

    CAS  Google Scholar 

  26. Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 58, 9155–9159.

    CAS  Google Scholar 

  27. Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

    CAS  Google Scholar 

  28. Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.

    CAS  Google Scholar 

  29. Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

    CAS  Google Scholar 

  30. Lang, Z. Q.; Song, G. L.; Wu, P. P.; Zheng, D. J. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5006-y.

  31. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  32. Huang, C. Q.; Huang, Y.; Liu, C. B.; Yu, Y. F.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem., Int. Ed. 2019, 58, 12014–12017.

    CAS  Google Scholar 

  33. Li, Y. Z.; Wang, Z.; Hu, J.; Li, S. W.; Du, Y. C.; Han, X. J.; Xu, P. Metal-organic frameworks derived interconnected bimetallic metaphosphate nanoarrays for efficient electrocatalytic oxygen evolution. Adv. Funct. Mater. 2020, 30, 1910498.

    CAS  Google Scholar 

  34. Deng, B. L.; Zhou, L. S.; Jiang, Z. Q.; Jiang, Z. J. High catalytic performance of nickel foam supported Co2P-Ni2P for overall water splitting and its structural evolutions during hydrogen/oxygen evolution reactions in alkaline solutions. J. Catal. 2019, 373, 81–92.

    CAS  Google Scholar 

  35. Zhou, X. C.; Gao, H.; Wang, Y. F.; Liu, Z.; Lin, J. Q.; Ding, Y. P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. J. Mater. Chem. A 2018, 6, 14939–14948.

    CAS  Google Scholar 

  36. Wang, N.; Li, X. F.; Hu, M. K.; Wei, W. B.; Zhou, S. H.; Wu, X. T.; Zhu, Q. L. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B: Environ. 2022, 316, 121667.

    CAS  Google Scholar 

  37. Wu, R.; Xiao, B.; Gao, Q.; Zheng, Y. R.; Zheng, X. S.; Zhu, J. F.; Gao, M. R.; Yu, S. H. A Janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem., Int. Ed. 2018, 57, 15445–15449.

    CAS  Google Scholar 

  38. He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.

    CAS  Google Scholar 

  39. Wang, Q.; Zhang, Z.; Cai, C.; Wang, M. Y.; Zhao, Z. L.; Li, M. H.; Huang, X.; Han, S. B.; Zhou, H.; Feng, Z. X. et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605–13615.

    CAS  Google Scholar 

  40. Li, D.; Li, Z. Y.; Zou, R.; Shi, G.; Huang, Y. M.; Yang, W.; Yang, W.; Liu, C. F.; Peng, X. W. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B: Environ. 2022, 307, 121170.

    CAS  Google Scholar 

  41. Yu, C.; Xu, F.; Luo, L.; Abbo, H. S.; Titinchi, S. J. J.; Shen, P. K.; Tsiakaras, P.; Yin, S. B. Ni-Co-P/NF-Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2019, 317, 191–198.

    CAS  Google Scholar 

  42. Xie, L. S.; Li, X. L.; Wang, B.; Meng, J.; Lei, H. T.; Zhang, W.; Cao, R. Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media. Angew. Chem., Int. Ed. 2019, 58, 18883–18887.

    CAS  Google Scholar 

  43. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    CAS  Google Scholar 

  44. Deng, X. H.; Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J. J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Understanding the roles of electrogenerated Co3+ and Co4+ in selectivity-tuned 5-hydroxymethylfurfural oxidation. Angew. Chem., Int. Ed. 2021, 60, 20535–20542.

    CAS  Google Scholar 

  45. Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development (R&D) Program of China (No. 2020YFA0406103), the National Natural Science Foundation of China (NSFC) (Nos. 21725102, 51902311, 22122506, 91961106, 22075267, and 21803002), Strategic Priority Research Program of the CAS (No. XDPB14), Anhui Provincial Natural Science Foundation (No. 2008085J05), Youth Innovation Promotion Association of CAS (No. 2019444), Open Funding Project of National Key Laboratory of Human Factors Engineering (No. SYFD062010K), Users with Excellence Program of Hefei Science Center CAS (No. 2020HSCUE003), and Fundamental Research Funds for the Central Universities (No. WK2060000039). The authors thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanbing Gong, Ran Long or Yujie Xiong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mao, X., Gong, W. et al. Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Res. 16, 6728–6735 (2023). https://doi.org/10.1007/s12274-022-5329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5329-8

Keywords

Navigation