Skip to main content
Log in

Exfoliated few-layered graphite anode with broadened delithiation voltage plateau and fast charging performance for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2024

This article has been updated

Abstract

Graphite is the traditional anode material for lithium ion batteries (LIBs) owing to its excellent cycling performance and low delithiation voltage plateau. However, as for LIBs, the improvement of energy density is limited by the capacity below voltage plateau of graphite. Moreover, the enhancement of fast charging performance is also a major challenge for graphite anodes. Here, the few-layered graphite (FLG) is obtained from the supercritical CO2 exfoliation method. One of the primary advantages for FLG is that the voltage plateau is broadened evidently than those of pristine graphite (PG) and commercial graphite (CG), which enables FLG to possess higher energy density. Importantly, the enlarged interlayer spacing of FLG is beneficial to the migration of Li+, which promotes fast charging performance. Moreover, the full cell can provide an exceptional electrochemical performance (114 mAh g− 1 at 1 C after 200 cycles with a remarkable capacity retention of 84%). This special method can pave a new avenue to improve the energy density and fast charging performance of LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Kim T, Song W, Son DY, Ono LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem 7:2942–2964

    Article  CAS  Google Scholar 

  2. Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3:385–418

    Article  Google Scholar 

  3. Wu J, Cao Y, Zhao H, Mao J, Guo Z (2019) The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1:57–76

    Article  CAS  Google Scholar 

  4. Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513e537

    Article  Google Scholar 

  5. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359e367

    Article  Google Scholar 

  6. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194e206

    Article  Google Scholar 

  7. Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang J-G et al (2017) Electrolyte additive enabled fast-charging and stable cycling lithium metal batteries. Nat Energy 2:17012

    Article  ADS  CAS  Google Scholar 

  8. Zhang Y, Qian J, Xu W, Russell SM, Chen X, Nasybulin E et al (2014) Dendritefree lithium deposition with self-aligned nanorod structure. Nano Lett 14:6889e6896

    Article  Google Scholar 

  9. Li Y, Jiao J, Bi J, Wang X, Wang Z, Chen L (2017) Controlled deposition of Li Metal. Nano Energy 32:241e246

    Article  Google Scholar 

  10. Ryou M-H, Lee YM, Lee Y, Winter M, Bieker P (2015) Mechanical surface modification of lithium metal: towards improved Li metal anode performance by Directed Li plating. Adv Funct Mater 25:834e841

    Google Scholar 

  11. Luo J, Fang C-C, Wu N-L (2017) High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv Energy Mater 8:1701482

    Article  Google Scholar 

  12. Shen X, Qian T, Chen P, Liu J, Wang M, Yan C (2018) Bioinspired polysulfiphobic artificial interphase layer on lithium metal anodes for lithium sulfur batteries. ACS Appl Mater Interfaces 10:30058e30064

    Article  Google Scholar 

  13. Weng S, Wu S, Liu Z, Yang G, Liu X, Zhang X, Zhang C, Liu Q, Huang Y, Li Y, Ateş MN, Su D, Gu L, Li H, Chen L, Xiao R, Wang Z, Wang X (2023) Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy 5:1–10

    Article  ADS  Google Scholar 

  14. Zhang H, Yang Y, Ren D, Wang L, He X (2021) Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater 36:147–170

    Article  Google Scholar 

  15. Zhang L, Wang W, Lu S, Xiang Y (2021) Carbon Anode materials: a detailed comparison between Na-ion and K-ion batteries. Adv Energy Mater 11:1–15

    Google Scholar 

  16. Mei W, Jiang L, Liang C, Sun J, Wang Q (2021) Understanding of Li-plating on graphite electrode: detection, quantification and mechanism revelation. Energy Storage Mater 41:209–221

    Article  Google Scholar 

  17. Ma X, Song X, Tang Y, Liu E, Xu C, Qi C, Li Y, Gao J, Li Y (2020) Exfoliated multi-layered graphene anode with the broadened delithiation voltage plateau below 0.5 V. J Energy Chem 49:233–242

    Article  Google Scholar 

  18. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon N Y 47:2049–2053

    Article  CAS  Google Scholar 

  19. Wu S, Xu R, Lu M, Ge R, Iocozzia J, Han C, Jiang B, Lin Z (2015) Graphene-Containing nanomaterials for Lithium-Ion Batteries. Adv Energy Mater 5:1–40

    Article  Google Scholar 

  20. Liu C, Liu X, Tan J, Wang Q, Wen H, Zhang C (2017) Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode. J Power Sources 342:157–164

    Article  CAS  Google Scholar 

  21. Yang G, Zhang S, Tong Y, Li X, Wang Z, Chen L (2019) Minimizing carbon particle size to improve lithium deposition on natural graphite. Carbon N Y 155:9–15

    Article  CAS  Google Scholar 

  22. Zhu H, Cao Y, Zhang J, Zhang W, Xu Y, Guo J, Yang W, Liu J (2016) One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J Mater Sci 51:3675–3683

    Article  ADS  CAS  Google Scholar 

  23. Mu Y, Han M, Li J, Liang J, Yu J (2021) Growing vertical graphene sheets on natural graphite for fast-charging lithium-ion batteries. Carbon N Y 173:477–484

    Article  CAS  Google Scholar 

  24. Son DK, Kim J, Raj MR, Lee G (2021) Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries. Carbon N Y 175:187–201

    Article  CAS  Google Scholar 

  25. Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47:3189–3216

    Article  CAS  PubMed  Google Scholar 

  26. Raccichini R, Varzi A, Wei D, Passerini S (2017) Critical insight into the relentless progression toward Graphene and Graphene-Containing materials for Lithium-Ion Battery anodes. Adv Mater 29:1–33

    Article  Google Scholar 

  27. Bai L, Xu Y, Liu A, Dong L, Zhang K, Li WS, Zhao FG (2022) Unusual graphite fluoride hydrolysis toward unconventional graphene oxide for high-performance supercapacitors and Li-ion batteries. Chem Eng J 434:134639–134646

    Article  CAS  Google Scholar 

  28. Liu D, Chen C, Xiong X (2021) Research progress on artificial protective films for lithium metal anodes. Acta Phys Chim Sin 37:2008078

    Google Scholar 

  29. Chen C, Zhang J, Hu B, Liang Q, Xiong X (2023) Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat Commun 14:4018

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding X, Huang H, Huang Q, Hu B, Li X, Ma X, Xiong X, Ding X, Huang H, Huang Q, Hu B, Li X, Ma X (2023) Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage. J Energy Chem 77:280–289

    Article  CAS  Google Scholar 

  31. Yue X, Zhang J, Dong Y, Chen Y, Shi Z, Xu X, Li X, Liang Z (2023) Reversible Li Plating on Graphite anodes through Electrolyte Engineering for fast-charging batteries. Angew Chem Int Ed 62:202302285

    Article  Google Scholar 

  32. Xu X, Yue X, Chen Y, Liang Z (2023) Li plating regulation on fast-charging Graphite anodes by a Triglyme‐LiNO3 Synergistic Electrolyte Additive. Angew Chem Int Ed 62:202306963

    Article  Google Scholar 

  33. Zhong C, Weng S, Wang Z, Zhan C, Wang X (2023) Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy 117:108894

    Article  CAS  Google Scholar 

  34. Kuphal R, Fang C (2023) Toward fast-charging lithium-ion batteries: quantitatively tracking lithium plating on graphite. Matter 6:2547–2549

    Article  CAS  Google Scholar 

  35. Xu C, Ma G, Yang W, Che S, Li Y, Jia Y, Liu H, Chen F, Zhang G, Liu H, Wu N, Huang G, Li Y (2022) One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries. Electrochim Acta 415:140198

    Article  CAS  Google Scholar 

  36. Xu C, Ma G, Yang W, Wang Y, Jia Y, Sun Y, Kong X, Yang J, Liu H, Zhang X, Huang G, Li Y (2023) Ultrahigh edge–nitrogen-doped porous carbon anode materials for high-capacity and fast-charging lithium-ion batteries. J Energy Storage 65:107256

    Article  Google Scholar 

  37. Wang H, Huang Y, Huang C, Wang X, Wang K, Chen H, Liu S, Wu Y, Xu K, Li W (2019) Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochim Acta 313:423–431

    Article  CAS  Google Scholar 

  38. Liu J, Zhang Y, Zhang L, Xie F, Vasileff A, Qiao SZ (2019) Graphitic Carbon Nitride (g-C3N4)-Derived N-Rich graphene with Tuneable Interlayer Distance as a high-rate Anode for Sodium-Ion batteries. Adv Mater 31:1–10

    ADS  CAS  Google Scholar 

  39. Kim N, Chae S, Ma J, Ko M, Cho J (2017) Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat Commun 8:1–10

    Article  Google Scholar 

  40. Zhu X, Fu Q, Tang L, Lin C, Xu J, Liang G, Li R, Luo L, Chen Y (2018) Mg2Nb34O87 porous microspheres for Use in High-Energy, Safe, Fast-Charging, and stable Lithium-ion batteries. ACS Appl Mater Interfaces 10:23711–23720

    Article  CAS  PubMed  Google Scholar 

  41. Fu Q, Liu X, Hou J, Pu Y, Lin C, Yang L, Zhu X, Hu L, Lin S, Luo L, Chen Y (2018) Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sources 397:231–239

    Article  CAS  Google Scholar 

  42. Tang Y, Wang X, Chen J, Wang X, Wang D, Mao Z (2020) Templated transformation of g-C3N4 nanosheets into nitrogen-doped hollow carbon sphere with tunable nitrogen-doping properties for application in Li-ions batteries. Carbon 168:458–467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22238012, 22178384, and 21908245), and the Science Foundation of China University of Petroleum, Beijing (No. ZX20220079).

Author information

Authors and Affiliations

Authors

Contributions

KC: Writing-review & editing, Formal analysis, Writing-original draft. ZS: Writing-review & editing, Formal analysis, Writing-original draft. CX: Formal analysis and Writing-original draft. RX: Writing-review & editing. GM: Formal analysis. YW: Writing-review & editing. CC: Writing-original draft. HL: Writing-review & editing, Formal analysis. PB: Formal analysis. SD: Writing-original draft. WY: Writing-review & editing, Supervision. CX: Formal analysis. YL: Writing review & editing, Supervision. ML: Writing-review & editing, Formal analysis. XC: Formal analysis, Supervision.

Corresponding authors

Correspondence to Chong Xu, Yongfeng Li, Mingyi Liu or Xi Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author “Yongfeng Li” should be declared as the corresponding author, not “Haodong Lei”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Sun, Z., Xu, C. et al. Exfoliated few-layered graphite anode with broadened delithiation voltage plateau and fast charging performance for lithium-ion batteries. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05832-7

Keywords

Navigation