Skip to main content
Log in

Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ethane dehydrogenation (EDH) to produce ethylene requires high operating temperature to achieve satisfactory ethylene yield, however, this process leads to coke formation and catalyst deactivation. Here, an active site isolation strategy was employed to inhibit side reaction and coke formation over fifteen types of metal single-atom metal/graphitic carbon nitride (M/g-C3N4) catalysts. Density functional theory (DFT) calculations completely describe reaction network of ethane dehydrogenation. On-lattice kinetic Monte Carlo simulations were carried out to evaluate catalytic performance under the realistic conditions. The Co/g-C3N4, Rh/g-C3N4, and Ni/g-C3N4 catalysts were screened out to exhibit higher C2H4(g) formation activity and C2H4(g) selectivity close to or equal to 100%. The low reactant partial pressure 0%–5% at atmospheric pressure facilitates ethane dehydrogenation, and the appropriate temperatures over Co/g-C3N4, Rh/g-C3N4, and Ni/g-C3N4 catalysts are 673.15, 723.15, and 723.15 K, respectively. Especially, Co/g-C3N4 catalyst presents the highest C2H4(g) formation activity, attributing to the appropriate anti-bonding strength between C atom and metal single-atom. Further, a simple descriptor, the reaction energy of C2H5* dehydrogenation to C2H4*, was proposed to quantitatively and quickly evaluate C2H4(g) formation activity. The present study laid a solid foundation for efficient design and development of single-atom catalysts with high-performance for selective dehydrogenation of alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

    CAS  Google Scholar 

  2. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  3. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    CAS  Google Scholar 

  4. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    CAS  Google Scholar 

  5. Pham, H. N.; Sattler, J. J. H. B.; Weckhuysen, B. M.; Datye, A. K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catal. 2016, 6, 2257–2264.

    CAS  Google Scholar 

  6. Aly, M.; Fornero, E. L.; Leon-Garzon, A. R.; Galvita, V. V.; Saeys, M. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts. ACS Catal. 2020, 10, 5208–5216.

    CAS  Google Scholar 

  7. Dai, Y. H.; Gu, J. J.; Tian, S. Y.; Wu, Y.; Chen, J. C.; Li, F. X.; Du, Y. H.; Peng, L. M.; Ding, W. P.; Yang, Y. H. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Catal. 2020, 381, 482–492.

    CAS  Google Scholar 

  8. Deng, L. D.; Miura, H.; Shishido, T.; Hosokawa, S.; Teramura, K.; Tanaka, T. Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: A catalytic interface for propane dehydrogenation. Chem. Commun. 2017, 53, 6937–6940.

    CAS  Google Scholar 

  9. Schweitzer, N. M.; Hu, B.; Das, U.; Kim, H.; Greeley, J.; Curtiss, L. A.; Stair, P. C.; Miller, J. T.; Hock, A. S. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal. 2014, 4, 1091–1098.

    CAS  Google Scholar 

  10. Estes, D. P.; Siddiqi, G.; Allouche, F.; Kovtunov, K. V.; Safonova, O. V.; Trigub, A. L.; Koptyug, I. V.; Copéret, C. C-H activation on Co, O sites: Isolated surface sites versus molecular analogs. J. Am. Chem. Soc. 2016, 138, 14987–14997.

    CAS  Google Scholar 

  11. Zhang, Y. Y.; Zhao, Y.; Otroshchenko, T.; Perechodjuk, A.; Kondratenko, V. A.; Bartling, S.; Rodemerck, U.; Linke, D.; Jiao, H. J.; Jiang, G. Y. et al. Structure-activity—selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts. ACS Catal. 2020, 10, 6377–6388.

    Google Scholar 

  12. Chang, Q. Y.; Wang, K. Q.; Hu, P.; Sui, Z. J.; Zhou, X. G.; Chen, D.; Yuan, W. K.; Zhu, Y. A. Dual-function catalysis in propane dehydrogenation over Pt1-Ga2O3 catalyst: Insights from a microkinetic analysis. AlChE J. 2020, 66, e16232.

    CAS  Google Scholar 

  13. Hosono, Y.; Saito, H.; Higo, T.; Watanabe, K.; Ito, K.; Tsuneki, H.; Maeda, S.; Hashimoto, K.; Sekine, Y. Co-CeO2 interaction induces the Mars—van Krevelen mechanism in dehydrogenation of ethane. J. Phys. Chem. C 2021, 125, 11411–11418.

    CAS  Google Scholar 

  14. Wang, L. C.; Zhang, Y. Y.; Xu, J. Y.; Diao, W. J.; Karakalos, S.; Liu, B.; Song, X. Y.; Wu, W.; He, T.; Ding, D. Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Appl. Catal. B Environ. 2019, 256, 117816.

    Google Scholar 

  15. Maeno, Z.; Yasumura, S.; Wu, X. P.; Huang, M. W.; Liu, C.; Toyao, T.; Shimizu, K. I. Isolated indium hydrides in CHA zeolites: Speciation and catalysis for nonoxidative dehydrogenation of ethane. J. Am. Chem. Soc. 2020, 142, 4820–4832.

    CAS  Google Scholar 

  16. Yao, R.; Herrera, J. E.; Chen, L. H.; Chin, Y. H. C. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catal. 2020, 10, 6952–6968.

    CAS  Google Scholar 

  17. Cavani, F.; Ballarini, N.; Cericola, A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 2007, 127, 113–131.

    CAS  Google Scholar 

  18. Sheng, J.; Yan, B.; Lu, W. D.; Qiu, B.; Gao, X. Q.; Wang, D. Q.; Lu, A. H. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chem. Soc. Rev. 2021, 50, 1438–1468.

    CAS  Google Scholar 

  19. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    CAS  Google Scholar 

  20. Borrome, M.; Gronert, S. Gas-phase dehydrogenation of alkanes: C-H activation by a graphene-supported nickel single-atom catalyst model. Angew. Chem., Int. Ed. 2019, 58, 14906–14910.

    CAS  Google Scholar 

  21. He, F.; Wang, Z. X.; Li, Y. X.; Peng, S. Q.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B Environ. 2020, 269, 118828.

    CAS  Google Scholar 

  22. Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

    CAS  Google Scholar 

  23. Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; López, N.; Pérez-Ramírez, J. Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J. Mater. Chem. A 2017, 5, 16393–16403.

    CAS  Google Scholar 

  24. Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 2019, 141, 580–607.

    CAS  Google Scholar 

  25. Huang, X. H.; Yan, H.; Huang, L.; Zhang, X. H.; Lin, Y.; Li, J. J.; Xia, Y. J.; Ma, Y. F.; Sun, Z. H.; Wei, S. Q. et al. Toward understanding of the support effect on Pd1 single-atom-catalyzed hydrogenation reactions. J. Phys. Chem. C 2019, 123, 7922–7930.

    CAS  Google Scholar 

  26. Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang, X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.

    CAS  Google Scholar 

  27. Li, J. Q.; Zhao, S. Y.; Yang, S. Z.; Wang, S. B.; Sun, H. Q.; Jiang, S. P.; Johannessen, B.; Liu, S. M. Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. J. Mater. Chem. A 2021, 9, 3029–3035.

    CAS  Google Scholar 

  28. Zhang, Y. X.; Guo, X. Y.; Liu, B.; Zhang, J. L.; Gao, X. H.; Ma, Q. X.; Fan, S. B.; Zhao, T. S. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel 2021, 305, 121473.

    CAS  Google Scholar 

  29. Chen, Z.; Chen, Y. J.; Chao, S. L.; Dong, X. B.; Chen, W. X.; Luo, J.; Liu, C. G.; Wang, D. S.; Chen, C.; Li, W. et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal. 2020, 10, 1865–1870.

    CAS  Google Scholar 

  30. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Google Scholar 

  31. Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 59, 6224–6229.

    CAS  Google Scholar 

  32. Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

    CAS  Google Scholar 

  33. Chen, Z. P.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785.

    Google Scholar 

  34. Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

    CAS  Google Scholar 

  35. Li, C. Y.; Wang, G. Dehydrogenation of light alkanes to monoolefins. Chem. Soc. Rev. 2021, 50, 4359–4381.

    CAS  Google Scholar 

  36. Li, X. Y.; Pei, C. L.; Gong, J. L. Shale gas revolution: Catalytic conversion of C1-C3 light alkanes to value-added chemicals. Chem 2021, 7, 1755–1801.

    CAS  Google Scholar 

  37. Najari, S.; Saeidi, S.; Concepcion, P.; Dionysiou, D. D.; Bhargava, S. K.; Lee, A. F.; Wilson, K. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 2021, 50, 4564–4605.

    CAS  Google Scholar 

  38. Tsyganok, A.; Harlick, P. J. E.; Sayari, A. Non-oxidative conversion of ethane to ethylene over transition metals supported on Mg-Al mixed oxide: Preliminary screening of catalytic activity and coking ability. Catal. Commun. 2007, 8, 850–854.

    CAS  Google Scholar 

  39. Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.

    CAS  Google Scholar 

  40. Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Wang, Y. Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustain. Syst. 2020, 4, 2000092.

    CAS  Google Scholar 

  41. Galvita, V.; Siddiqi, G.; Sun, P. P.; Bell, A. T. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts. J. Catal. 2010, 271, 209–219.

    CAS  Google Scholar 

  42. Kong, N. N.; Fan, X.; Liu, F. F.; Wang, L.; Lin, H. P.; Li, Y. Y.; Lee, S. T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 2020, 14, 5772–5779.

    CAS  Google Scholar 

  43. Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, D. C-H bond activation in light alkanes:A theoretical perspective. Chem. Soc. Rev. 2021, 50, 4299–4358.

    CAS  Google Scholar 

  44. Matera, S.; Schneider, W. F.; Heyden, A.; Savara, A. Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal. 2019, 9, 6624–6647.

    CAS  Google Scholar 

  45. Batchu, S. P.; Wang, H. L.; Chen, W. Q.; Zheng, W. Q.; Caratzoulas, S.; Lobo, R. F.; Vlachos, D. G. Ethane dehydrogenation on single and dual centers of Ga-modified γ-Al2O3. ACS Catal. 2021, 11, 1380–1391.

    CAS  Google Scholar 

  46. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  47. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  48. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  50. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  51. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  52. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  53. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem. Phys. 2000, 113, 9901–9904.

    CAS  Google Scholar 

  54. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    CAS  Google Scholar 

  55. Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem. Phys. 1999, 111, 7010–7022.

    CAS  Google Scholar 

  56. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    CAS  Google Scholar 

  57. Zhou, Y. L.; Wei, F. F.; Lin, J.; Li, L.; Li, X. Y.; Qi, H. F.; Pan, X. L.; Liu, X. Y.; Huang, C. D.; Lin, S. et al. Sulfate-modified NiAl mixed oxides as effective C-H bond-breaking agents for the sole production of ethylene from ethane. ACS Catal. 2020, 10, 7619–7629.

    CAS  Google Scholar 

  58. Collinge, G.; Yuk, S. F.; Nguyen, M. T.; Lee, M. S.; Glezakou, V. A.; Rousseau, R. Effect of collective dynamics and anharmonicity on entropy in heterogenous catalysis: Building the case for advanced molecular simulations. ACS Catal. 2020, 11, 9236–9260.

    Google Scholar 

  59. Wu, H. Z.; Liu, L. M.; Zhao, S. J. The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 2014, 16, 3299–3304.

    CAS  Google Scholar 

  60. Ji, Y. J.; Dong, H. L.; Lin, H. P.; Zhang, L. L.; Hou, T. J.; Li, Y. Y. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Adv. 2016, 6, 52377–52383.

    CAS  Google Scholar 

  61. Stamatakis, M.; Vlachos, D. G. A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. J. Chem. Phys. 2011, 134, 214115.

    Google Scholar 

  62. Nielsen, J.; d’Avezac, M.; Hetherington, J.; Stamatakis, M. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions. J. Chem. Phys. 2013, 135, 224706.

    Google Scholar 

  63. Pineda, M.; Stamatakis, M. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics. J. Chem. Phys. 2017, 147, 024105.

    CAS  Google Scholar 

  64. Vignola, E.; Steinmann, S. N.; Vandegehuchte, B. D.; Curulla, D.; Stamatakis, M.; Sautet, P. A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. J. Chem. Phys. 2017, 147, 054106.

    Google Scholar 

  65. Stamatakis, M.; Vlachos, D. G. Equivalence of on-lattice stochastic chemical kinetics with the well-mixed chemical master equation in the limit of fast diffusion. Comput. Chem. Eng. 2011, 35, 2602–2610.

    CAS  Google Scholar 

  66. Piccinin, S.; Stamatakis, M. Co oxidation on Pd (111): A first-principles-based kinetic Monte Carlo study. ACS Catal. 2014, 4, 2143–2152.

    CAS  Google Scholar 

  67. Horiuti, I.; Polanyi, M. Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 1934, 30, 1164–1172.

    Google Scholar 

  68. Yang, B.; Gong, X. Q.; Wang, H. F.; Cao, X. M.; Rooney, J. J.; Hu, P. Evidence to challenge the universality of the horiuti-polanyi mechanism for hydrogenation in heterogeneous catalysis: Origin and trend of the preference of a non-horiuti-polanyi mechanism. J. Am. Chem. Soc. 2013, 135, 15244–15250.

    CAS  Google Scholar 

  69. Zhao, E. W.; Zheng, H. B.; Zhou, R. H.; Hagelin-Weaver, H. E.; Bowers, C. R. Shaped ceria nanocrystals catalyze efficient and selective para-hydrogen-enhanced polarization. Angew. Chem., Int. Ed. 2015, 54, 14270–14275.

    CAS  Google Scholar 

  70. Hook, A.; Celik, F. E. Predicting selectivity for ethane dehydrogenation and coke formation pathways over model Pt-M surface alloys with ab initio and scaling methods. J. Phys. Chem. C 2017, 121, 17882–17892.

    CAS  Google Scholar 

  71. Lian, Z.; Ali, S.; Liu, T. F.; Si, C. W.; Li, B.; Su, D. S. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS Catal. 2018, 8, 4694–4704.

    CAS  Google Scholar 

  72. Nam, J.; Celik, F. E. Effect of tin in the bulk of platinum-tin alloys for ethane dehydrogenation. Top. Catal. 2020, 63, 700–713.

    CAS  Google Scholar 

  73. Zhao, Z. J.; Zhao, J. B.; Chang, X.; Zha, S. J.; Zeng, L.; Gong, J. L. Competition of C-C bond formation and C-H bond formation for acetylene hydrogenation on transition metals: A density functional theory study. AIChE J. 2019, 65, 1059–1066.

    CAS  Google Scholar 

  74. Hansen, M. H.; Nørskov, J. K.; Bligaard, T. First principles micro-kinetic model of catalytic non-oxidative dehydrogenation of ethane over close-packed metallic facets. J. Catal. 2019, 374, 161–170.

    CAS  Google Scholar 

  75. Huš, M.; Kopač, D.; Likozar, B. Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations. J. Catal. 2020, 386, 126–138.

    Google Scholar 

  76. Kozuch, S.; Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 2011, 44, 101–110.

    CAS  Google Scholar 

  77. Zha, S. J.; Sun, G. D.; Wu, T. F.; Zhao, J. B.; Zhao, Z. J.; Gong, J. L. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 2018, 5, 3925–3931.

    Google Scholar 

  78. Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–407.

    CAS  Google Scholar 

  79. Oana, M.; Hoffmann, R.; Abruña, H. D.; DiSalvo, F. J. Adsorption of CO on PtBi2 and PtBi surfaces. Surf. Sci. 2005, 574, 1–16.

    CAS  Google Scholar 

  80. Poloni, R.; Lee, K.; Berger, R. F.; Smit, B.; Neaton, J. B. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites. J. Phys. Chem. Lett. 2014, 5, 861–865.

    CAS  Google Scholar 

  81. Greiner, M. T.; Jones, T. E.; Beeg, S.; Zwiener, L.; Scherzer, M.; Girgsdies, F.; Piccinin, S.; Armbrüster, M.; Knop-Gericke, A.; Schlögl, R. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008–1015.

    CAS  Google Scholar 

  82. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

    CAS  Google Scholar 

  83. Huang, Z. Q.; Chen, Y. T.; Chang, C. R.; Li, J. Theoretical insights into dual-metal-site catalysts for the nonoxidative coupling of methane. ACS Catal. 2021, 11, 13149–13159.

    CAS  Google Scholar 

  84. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

    CAS  Google Scholar 

  85. Su, G. M.; Wang, H.; Barnett, B. R.; Long, J. R.; Prendergast, D.; Drisdell, W. S. Backbonding contributions to small molecule chemisorption in a metal-organic framework with open copper(I) centers. Chem. Sci. 2021, 12, 2156–2164.

    CAS  Google Scholar 

  86. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    CAS  Google Scholar 

  87. Xu, J. Y.; Cao, X. M.; Hu, P. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys. Chem. Chem. Phys. 2021, 23, 11155–11179.

    CAS  Google Scholar 

  88. Motagamwala, A. H.; Dumesic, J. A. Microkinetic modeling: A tool for rational catalyst design. Chem. Rev. 2021, 121, 1049–1076.

    CAS  Google Scholar 

  89. Pan, Y.; Bhowmick, A.; Wu, W.; Zhang, Y.; Diao, Y. X.; Zheng, A. G.; Zhang, C.; Xie, R. X.; Liu, Z. X.; Meng, J. Q. et al. Titanium silicalite-1 nanosheet-supported platinum for non-oxidative ethane dehydrogenation. ACS Catal. 2021, 11, 9970–9985.

    CAS  Google Scholar 

  90. Xu, Y. B.; Yu, W. D.; Zhang, H.; Xin, J.; He, X. H.; Liu, B.; Jiang, F.; Liu, X. H. Suppressing C-C bond dissociation for efficient ethane dehydrogenation over the isolated Co(II) sites in SAPO-34. ACS Catal. 2021, 11, 13001–13019.

    CAS  Google Scholar 

  91. Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.

    CAS  Google Scholar 

  92. Han, J. T.; Xue, Z. H.; Zhang, K.; Wang, H. H.; Li, X. H.; Chen, J. S. Atomically dispersed Ni-based anti-coking catalysts for methanol dehydrogenation in a fixed-bed reactor. ACS Catal. 2020, 10, 12569–12574.

    CAS  Google Scholar 

  93. Gómez-Quero, S.; Tsoufis, T.; Rudolf, P.; Makkee, M.; Kapteijn, F.; Rothenberg, G. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3. Catal. Sci. Technol. 2013, 3, 962–971.

    Google Scholar 

  94. Zhu, J.; Yang, M. L.; Yu, Y. D.; Zhu, Y. A.; Sui, Z. J.; Zhou, X. G.; Holmen, A.; Chen, D. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 2015, 5, 6310–6319.

    CAS  Google Scholar 

  95. Phadke, N. M.; Mansoor, E.; Bondil, M.; Head-Gordon, M.; Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 2019, 141, 1614–1627.

    CAS  Google Scholar 

  96. Peng, M.; Jia, Z. M.; Gao, Z. R.; Xu, M.; Cheng, D. Y.; Wang, M.; Li, C. Y.; Wang, L. L.; Cai, X. B.; Jiang, Z. et al. Antisintering Pd1 catalyst for propane direct dehydrogenation with in situ active sites regeneration ability. ACS Catal. 2022, 12, 2244–2252.

    CAS  Google Scholar 

  97. Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

    CAS  Google Scholar 

  98. Shi, L.; Yan, B.; Shao, D.; Jiang, F.; Wang, D. Q.; Lu, A. H. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst. Chin. J. Catal. 2017, 38, 389–395.

    CAS  Google Scholar 

  99. Li, P. P.; Zhang, X. J.; Wang, J. N.; Xue, Y. M.; Yao, Y. B.; Chai, S. S.; Zhou, B.; Wang, X.; Zheng, N. F.; Yao, J. N. Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation. J. Am. Chem. Soc. 2022, 144, 5930–5936.

    CAS  Google Scholar 

  100. Yang, J. H.; Wu, X. T.; Li, X. F.; Liu, Y.; Gao, M.; Liu, X. Y.; Kong, L. N.; Yang, S. Y. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. Appl. Phys. A 2011, 105, 161.

    CAS  Google Scholar 

  101. Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B 2010, 114, 9429–9434.

    CAS  Google Scholar 

  102. Wang, T.; Abild-Pedersen, F. Identifying factors controlling the selective ethane dehydrogenation on Pt-based catalysts from DFT based micro-kinetic modeling. J. Energy Chem. 2021, 58, 37–40.

    CAS  Google Scholar 

  103. Wu, J.; Peng, Z. M.; Bell, A. T. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100x/Mg(Al)O (70 ≤C x ≤ 100). J. Catal. 2014, 311, 161–168.

    CAS  Google Scholar 

  104. Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

    CAS  Google Scholar 

  105. Nam, J. S.; Rong Kim, A.; Kim, D. M.; Chang, T. S.; Kim, B. S.; Bae, J. W. Novel heterogeneous Rh-incorporated graphitic-carbon nitride for liquid-phase carbonylation of methanol to acetic acid. Catal. Commun. 2017, 99, 141–145.

    CAS  Google Scholar 

  106. Wang, H. K.; Chai, S. S.; Li, P. P.; Yang, Y. J.; Wang, X. Non-oxidative propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catal. Lett., in press, https://doi.org/10.1007/s10562-022-04018-y.

  107. Wang, Q. G.; Xu, W. T.; Ma, Z. C.; Yu, F.; Chen, Y.; Liao, H. Y.; Wang, X. Y.; Zhou, J. C. Highly effective direct dehydrogenation of propane to propylene by microwave catalysis at low temperature over Co-Sn/NC microwave catalyst. ChemCatChem 2021, 13, 1009–1022.

    CAS  Google Scholar 

  108. Jiang, Y. Q.; Fan, X. L.; Chen, M.; Xiao, X. Z.; Zhang, Y. W.; Wang, C. T.; Chen, L. X. AuPd nanoparticles anchored on nitrogen-decorated carbon nanosheets with highly efficient and selective catalysis for the dehydrogenation of formic acid. J. Phys. Chem. C 2018, 122, 4792–4801.

    CAS  Google Scholar 

  109. Deng, Q. F.; Xin, J. J.; Ma, S. K.; Cui, F. J.; Zhao, Z. L.; Jia, L. H. Hydrogen production from the decomposition of formic acid over carbon nitride-supported AgPd alloy nanoparticles. Energy Technol. 2018, 6, 2374–2379.

    CAS  Google Scholar 

  110. Liu, H.; Liu, X. Y.; Yang, W. W.; Shen, M. Q.; Geng, S.; Yu, C.; Shen, B.; Yu, Y. B. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction. J. Mater. Chem. A 2019, 7, 2022–2026.

    CAS  Google Scholar 

  111. Gao, M. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Xu, S. C.; Feng, M.; Li, H. B. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale 2019, 11, 3506–3513.

    CAS  Google Scholar 

  112. Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Photocatalytic C-H activation and oxidative esterification using Pd@g-C3N4. Catal. Today 2018, 309, 248–252.

    CAS  Google Scholar 

  113. Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

    Google Scholar 

  114. Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. Understanding trends in C-H bond activation in heterogeneous catalysis. Nat. Mater. 2017, 16, 225–229.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key R&D Program of China (No. 2021YFA1502804), the National Natural Science Foundation of China (Nos. 22078221 and 21776193), and the Science Foundation for Distinguished Young Scholar of Shanxi Province (No. 20210302121005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojun Wang or Riguang Zhang.

Electronic Supplementary Material

12274_2022_5187_MOESM1_ESM.pdf

Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, B., Fan, M. et al. Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Res. 16, 6142–6152 (2023). https://doi.org/10.1007/s12274-022-5187-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5187-4

Keywords

Navigation