Skip to main content
Log in

The DFT Study of Single-Atom Pd1/g-C3N4 Catalyst for Selective Acetylene Hydrogenation Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Inspired by the recently experimental discovered that the single-atom Pd1/g-C3N4 catalyst exhibited higher ethylene selectivity for hydrogenation of acetylene, we systematically investigate the mechanism of such reactions over Pd1/g-C3N4 by using the B3LYP method of density functional theory. We found that Pd1/g-C3N4 can catalytic acetylene hydrogenation with high of selectivity but low of activity energy, which is consistent with the experimental results.

Graphical Abstract

The diagram of the whole reaction path over single-atom Pd1/C3N4 catalyst and the corresponding energy barrier at each step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Derrien ML (1986) Chapter 18 selective hydrogenation applied to the refining of petrochemical raw materials produced by steam cracking. In: Cerveny L (ed) Studies in surface science and catalysis, vol 27. Elsevier, New York, pp 613–666. https://doi.org/10.1016/S0167-2991(08)65364-1

    Chapter  Google Scholar 

  2. Borodziński A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 48(2):91–144. https://doi.org/10.1080/01614940500364909

    Article  CAS  Google Scholar 

  3. Borodziński A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 2. Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 50(3):379–469. https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  4. Sárkány A, Geszti O, Sáfrán G (2008) Preparation of Pdshell–Aucore/SiO2 catalyst and catalytic activity for acetylene hydrogenation. Appl Catal A Gen 350(2):157–163. https://doi.org/10.1016/j.apcata.2008.08.012

    Article  CAS  Google Scholar 

  5. Lopez N, Vargas-Fuentes C (2012) Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chem Commun 48(10):1379–1391. https://doi.org/10.1016/j.apcata.2008.08.012

    Article  CAS  Google Scholar 

  6. González S, Neyman KM, Shaikhutdinov S, Freund H-J, Illas F (2007) On the promoting role of Ag in selective hydrogenation reactions over Pd–Ag bimetallic catalysts: a theoretical study. J Phys Chem C 111(18):6852–6856. https://doi.org/10.1021/jp071584v

    Article  CAS  Google Scholar 

  7. Mei D, Neurock M, Smith CM (2009) Hydrogenation of acetylene–ethylene mixtures over Pd and Pd–Ag alloys: first-principles-based kinetic Monte Carlo simulations. J Catal 268(2):181–195. https://doi.org/10.1016/j.jcat.2009.09.004

    Article  CAS  Google Scholar 

  8. Sheth PA, Neurock M, Smith CM (2005) First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene–ethylene mixtures. J Phys Chem B 109(25):12449–12466. https://doi.org/10.1021/jp050194a

    Article  CAS  PubMed  Google Scholar 

  9. Kim SK, Lee JH, Ahn IY, Kim W-J, Moon SH (2011) Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Appl Catal A Gen 401(1):12–19. https://doi.org/10.1016/j.apcata.2011.04.048

    Article  CAS  Google Scholar 

  10. Guczi L, Schay Z, Stefler G, Liotta LF, Deganello G, Venezia AM (1999) Pumice-supported Cu–Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene. J Catal 182(2):456–462. https://doi.org/10.1006/jcat.1998.2344

    Article  CAS  Google Scholar 

  11. Volpe MA, Rodriguez P, Gigola CE (1999) Preparation of Pd–Pb/α-Al2O3 catalysts for selective hydrogenation using PbBu4: the role of metal-support boundary atoms and the formation of a stable surface complex. Catal Lett 61(1):27–32. https://doi.org/10.1023/A:1019087814472

    Article  CAS  Google Scholar 

  12. Anderson JA, Mellor J, Wells RPK (2009) Pd catalysed hexyne hydrogenation modified by Bi and by Pb. J Catal 261(2):208–216. https://doi.org/10.1016/j.jcat.2008.11.023

    Article  CAS  Google Scholar 

  13. Kumar N, Ghosh P (2016) Selectivity and reactivity of Pd-rich PdGa surfaces toward selective hydrogenation of acetylene: interplay of surface roughness and ensemble effect. J Phys Chem C 120(50):28654–28663. https://doi.org/10.1021/acs.jpcc.6b10106

    Article  CAS  Google Scholar 

  14. Osswald J, Giedigkeit R, Jentoft RE, Armbrüster M, Girgsdies F, Kovnir K et al (2008) Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene. Part I. Preparation and structural investigation under reaction conditions. J Catal 258(1):210–218. https://doi.org/10.1016/j.jcat.2008.06.013

    Article  CAS  Google Scholar 

  15. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE et al (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335(6073):1209. https://doi.org/10.1126/science.1215864

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Yang X, Wang A, Miao S, Liu X, Pan X et al (2016) Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation. Chin J Catal 37(5):692–699. https://doi.org/10.1016/S1872-2067(15)61090-7

    Article  CAS  Google Scholar 

  17. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C et al (2015) Single-Atom Pd1/Graphene Catalyst Achieved by Atomic Layer Deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137(33):10484–10487. https://doi.org/10.1021/jacs.5b06485

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Bunes BR, Zang L, Wang C. Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environ Chem Lett 2017(2013):1–29. https://doi.org/10.1021/jacs.7b01602

  19. Gulyaeva YK, Kaichev VV, Zaikovskii VI, Kovalyov EV, Suknev AP, Bal’zhinimaev BS (2015) Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catal Today 245:139–146. https://doi.org/10.1016/j.cattod.2014.05.028

    Article  CAS  Google Scholar 

  20. Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal Commun 10(1):86–91. https://doi.org/10.1016/j.catcom.2008.07.039

    Article  CAS  Google Scholar 

  21. Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y (2012) A Strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116(44):23485–23493. https://doi.org/10.1021/jp308334x

    Article  CAS  Google Scholar 

  22. Deifallah M, McMillan PF, Corà F (2008) Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C 112(14):5447–5453. https://doi.org/10.1021/jp711483t

    Article  CAS  Google Scholar 

  23. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606. https://doi.org/10.1021/cs300240x

    Article  CAS  Google Scholar 

  24. Vilé G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M et al (2015) A stable single-site palladium catalyst for hydrogenations. Angew Chem 54(38):11265. https://doi.org/10.1002/anie.201505073

    Article  CAS  Google Scholar 

  25. Huang X, Xia Y, Cao Y, Zheng X, Pan H, Zhu J et al (2017) Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Research 10(4):1302–1312. https://doi.org/10.1007/s12274-016-1416-z

    Article  CAS  Google Scholar 

  26. Frisch MJ, Schlegel GWT,HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li HPHX, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90(4):2154–2161. https://doi.org/10.1063/1.456010

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94(14):5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  30. Miyamoto Y, Cohen ML, Louie SG (1997) Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun 102(8):605–608. https://doi.org/10.1016/S0038-1098(97)00025-2

    Article  CAS  Google Scholar 

  31. Teter DM, Hemley RJ (1996) Low-compressibility carbon nitrides. Science 271(5245):53. https://doi.org/10.1126/science.271.5245.53

    Article  CAS  Google Scholar 

  32. Alves I, Demazeau G, Tanguy B, Weill F (1999) On a new model of the graphitic form of C3N4. Solid State Commun 109(11):697–701. https://doi.org/10.1016/S0038-1098(98)00631-0

    Article  CAS  Google Scholar 

  33. Kroke E, Schwarz M, Horathbordon E (2002) Tri-s-triazine derivatives. Part I. From trichlorotri-s-triazine to graphitic C3N4 structures. New J Chem 26(5):508–512. https://doi.org/10.1039/B111062B

    Article  CAS  Google Scholar 

  34. Gracia J, Kroll P (2009) Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state. J Mater Chem 19(19):3013–3019. https://doi.org/10.1039/B821568E

    Article  CAS  Google Scholar 

  35. Li S-L, Yin H, Kan X, Gan L-Y, Schwingenschlogl U, Zhao Y (2017) Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts. Phys Chem Chem Phys 19(44):30069–30077. https://doi.org/10.1039/C7CP05195F

    Article  CAS  PubMed  Google Scholar 

  36. Gao G, Jiao Y, Waclawik ER, Du A (2016) Single Atom (Pd/Pt) Supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc 138(19):6292–6297. https://doi.org/10.1021/jacs.6b02692

    Article  CAS  PubMed  Google Scholar 

  37. He F, Li K, Yin C, Wang Y, Tang H, Wu Z (2017) Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. Carbon 114:619–627. https://doi.org/10.1016/j.carbon.2016.12.061

    Article  CAS  Google Scholar 

  38. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH et al (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339. https://doi.org/10.1021/jacs.6b13100

    Article  CAS  PubMed  Google Scholar 

  39. Studt F, Abild-Pedersen F, Bligaard T, Sørensen Rasmus Z, Christensen Claus H, Nørskov Jens K (2008) On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew Chem 120(48):9439–9442. https://doi.org/10.1002/ange.200802844

    Article  Google Scholar 

  40. Mei D, Sheth PA, Neurock M, Smith CM (2006) First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111). J Catal 242(1):1–15. https://doi.org/10.1016/j.jcat.2006.05.009

    Article  CAS  Google Scholar 

  41. Krajčí M, Hafner J (2011) Complex intermetallic compounds as selective hydrogenation catalysts—a case study for the (100) surface of Al13Co4. J Catal 278(2):200–207. https://doi.org/10.1016/j.jcat.2010.12.004

    Article  CAS  Google Scholar 

  42. Krajčí M, Hafner J (2012) Intermetallic compound AlPd as a selective hydrogenation catalyst: a DFT study. J Phys Chem C 116(10):6307–6319. https://doi.org/10.1021/jp212317u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Fundation of China (NSFC, Grant No. 21363020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Kang.

Ethics declarations

Conflict of interest

We have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhu, M. & Kang, L. The DFT Study of Single-Atom Pd1/g-C3N4 Catalyst for Selective Acetylene Hydrogenation Reaction. Catal Lett 148, 2992–3002 (2018). https://doi.org/10.1007/s10562-018-2532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2532-z

Keywords

Navigation