Skip to main content
Log in

Soft thermal nanoimprint lithography using a nanocomposite mold

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Soft nanoimprint lithography has been limited to ultraviolet (UV) curable resists. Here, we introduce a novel approach for soft thermal nanoimprinting. Thisunprecedented combination of the terms “soft” and “thermal” for nanoimprinting became possible thanks to an innovative nanocomposite mold consisting of aflexible polydimethylsiloxane (PDMS) substrate with chemically attached rigidrelief features. We used soft thermal nanoimprinting to produce high-resolution nanopatterns with a sub-100 nm feature size. Furthermore, we demonstrate the applicability of our nanoimprint approach for the nanofabrication of thermallyimprinted nanopatterns on non-planar surfaces such as lenses. Our new nanofabrication strategy paves the way to numerous applications that require the direct fabrication of functional nanostructures on unconventional substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.

    Article  Google Scholar 

  2. Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.

    Article  Google Scholar 

  3. Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

    Article  Google Scholar 

  4. Legrand, D. G.; Gaines, G. L., Jr. The molecular weight dependence of polymer surface tension. J. Colloid Interface Sci. 1969, 31, 162–167.

    Article  Google Scholar 

  5. Jung, G. Y.; Li, Z. Y.; Wu, W.; Chen, Y.; Olynick, D. L.; Wang, S. Y.; Tong, W. M.; Williams, R. S. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 2005, 21, 1158–1161.

    Article  Google Scholar 

  6. Moran, I. W.; Briseno, A. L.; Loser, S.; Carter, K. R. Device fabrication by easy soft imprint nano-lithography. Chem. Mater. 2008, 20, 4595–4601.

    Article  Google Scholar 

  7. Fan, Z. Y.; Razavi, H.; Do, J.-W.; Moriwaki, A.; Ergen, O.; Chueh, J. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

    Article  Google Scholar 

  8. Chen, J. W.; Gu, C. L.; Lin, H.; Chen, S.-C. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces. Opt. Express 2015, 23, 20977–20985.

    Article  Google Scholar 

  9. Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9, 741–746.

    Article  Google Scholar 

  10. Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.

    Article  Google Scholar 

  11. Schmid, H.; Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042–3049.

    Article  Google Scholar 

  12. Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002, 18, 5314–5320.

    Article  Google Scholar 

  13. Li, Z. W.; Gu, Y. N.; Wangs, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y. F.; Cui, B.; Williams, R. S. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 2009, 9, 2306–2310.

    Article  Google Scholar 

  14. Richeton, J.; Ahzi, S.; Vecchio, K. S. S.; Jiang, F. C.; Adharapurapu, R. R. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 2006, 43, 2318–2335.

    Article  Google Scholar 

  15. Wang, Z. X.; Volinsky, A. A.; Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polymer Sci. 2014, 131, 41050.

    Article  Google Scholar 

  16. Chuah, Y. J.; Koh, Y. T.; Lim, K.; Menon, N. V.; Wu, Y. N.; Kang, Y. J. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 2015, 5, 18162.

    Article  Google Scholar 

  17. Lee, J. N.; Park, C.; Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554.

    Article  Google Scholar 

  18. Menahem, L.; Schvartzman, M. Soft nanoimprint mold with rigid relief features for improved pattern transfer. J. Vac. Sci. Technol. B 2017, 35, 010602.

    Article  Google Scholar 

  19. Maex, K.; Baklanov, M. R.; Shamiryan, D.; Lacopi, F.; Brongersma, S. H.; Yanovitskaya, Z. S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841.

    Article  Google Scholar 

  20. Yamazaki, K.; Namatsu, H. 5-nm-order electron-beam litho-graphy for nanodevice fabrication. Jpn. J. Appl. Phys. 2004, 43, 3767–3771.

    Article  Google Scholar 

  21. Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 2005, 14, 590–597.

    Article  Google Scholar 

  22. McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H. K.; Schueller, O. J. A.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40.

    Article  Google Scholar 

  23. Schvartzman, M.; Palma, M.; Sable, J.; Abramson, J.; Hu, X.; Sheetz, M. P.; Wind, S. J. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11, 1306–1312.

    Article  Google Scholar 

  24. Schuster, B.-E.; Haug, A.; Häffner, M.; Blideran, M. M.; Fleischer, M.; Peisert, H.; Kern, D. P.; Chassé, T. Characterization of the morphology and composition of commercial negative resists used for lithographic processes. Anal. Bioanal. Chem. 2009, 393, 1899–1905.

    Article  Google Scholar 

  25. Yuan, Q. H..; Yin, G. Q.; Ning, Z. Y. Effect of oxygen plasma on low dielectric constant HSQ (Hydrogensilsesquioxane) films. Plasma Sci. Technol. 2013, 15, 86–88.

    Article  Google Scholar 

  26. Kawamori, M.; Nakamatsu, K.; Haruyama, Y.; Matsui, S. Effect of oxygen plasma irradiation on hydrogen silsesquioxane nanopatterns replicated by room-temperature nanoimprinting. Jpn. J App. Phys. 2006, 45, 8994–8996.

    Article  Google Scholar 

  27. Cai, H. G.; Wind, S. J. Improved glass surface passivation for single-molecule nanoarrays. Langmuir 2016, 32, 10034–10041.

    Article  Google Scholar 

  28. Yang, K.-Y.; Yoon, K.-M.; Kim, J.-W.; Lee, J.-H.; Lee, H. Low temperature fabrication of residue-free polymer patterns on flexible polymer substrate. Jpn. J. Appl. Phys. 2009, 48, 095003.

    Article  Google Scholar 

  29. Liu, M.; Sun, J. R.; Chen, Q. F. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A: Phys. 2009, 151, 42–45.

    Article  Google Scholar 

  30. Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polyd-imethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147.

    Article  Google Scholar 

  31. Gates, B. D.; Whitesides, G. M. Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 2003, 125, 14986–14987.

    Article  Google Scholar 

  32. Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; Yasuda, H. K.; Wikström, K. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 2000, 41, 6851–6863.

    Article  Google Scholar 

  33. Gogolides, E.; Constantoudis, V.; Kokkoris, G.; Kontziampasis, D.; Tsougeni, K.; Boulousis, G.; Vlachopoulou, M.; Tserepi, A. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J. Phys. D: Appl. Phys. 2011, 44, 174021.

    Article  Google Scholar 

  34. Liou, H.-C.; Pretzer, J. Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films. Thin Solid Films 1998, 335, 186–191.

    Article  Google Scholar 

  35. Chung, S. W.; Shin, J. H.; Park, N. H.; Park, J. W. Dielectric properties of hydrogen silsesquioxane films degraded by heat and plasma treatment. Jpn. J. Appl. Phys. 1999, 38, 5214–5219.

    Article  Google Scholar 

  36. Oh, Y.; Lim, J. W.; Kim, J. G.; Wang, H.; Kang, B.-H.; Park, Y. W.; Kim, H.; Jang, Y. J.; Kim, J.; Kim, D. H. et al. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano 2016, 10, 10143–10151.

    Article  Google Scholar 

  37. Bi, Y.-G.; Feng, J.; Li, Y.-F.; Zhang, X.-L.; Liu, Y.-F.; Jin, Y.; Sun, H.-B. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv. Mater. 2013, 25, 6969–6974.

    Article  Google Scholar 

  38. Jin, Y.; Feng, J.; Zhang, X.-L.; Bi, Y.-G.; Bai. Y.; Chen, L.; Lan, T.; Liu, Y.-F.; Chen, Q.-D.; Sun, H.-B. Solving effici-ency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv. Mater. 2012, 24, 1187–1191.

    Article  Google Scholar 

  39. Bi, Y.-G.; Feng, J.; Li, Y.-F.; Zhang, Y.-L.; Liu, Y.-S.; Chen, L.; Liu, Y.-F.; Guo, L.; Wei, S.; Sun, H.-B. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode. ACS Photonics 2014, 1, 690–695.

    Article  Google Scholar 

  40. Fujita, Y.; Aubert, R.; Walke, P.; Yuan, H.; Kenens, B.; Inose, T.; Steuwe, C.; Toyouchi, S.; Fortuni, B.; Chamtouri, M. et al. Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 2017, 9, 13025–13033.

    Article  Google Scholar 

  41. Xiong, W.; Zhou, Y. S.; He, X. N.; Gao, Y.; Mahjouri-Samani, M.; Jiang, L.; Baldacchini, T.; Lu, Y. F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci. Appl. 2012, 1, e6.

    Article  Google Scholar 

  42. Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.

    Article  Google Scholar 

  43. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47, 2–12.

    Article  Google Scholar 

  44. Guo, L. J. Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 2004, 37, R123–R141.

    Article  Google Scholar 

  45. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.

    Article  Google Scholar 

  46. Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.

    Article  Google Scholar 

  47. Kim, B.; Park, M.; Kim, Y. S.; Jeong, U. Thermal expansion and contraction of an elastomer stamp causes position-dep-endent polymer patterns in capillary force lithography. ACS Appl. Mater. Interfaces 2011, 3, 4695–4702.

    Article  Google Scholar 

  48. Cheyns, D.; Vasseur, K.; Rolin, C.; Genoe, J.; Poortmans, J.; Heremans, P. Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic hetero-junction solar cells. Nanotechnology 2008, 19, 424016.

    Article  Google Scholar 

  49. Cecchini, M.; Signori, F.; Pingue, P.; Bronco, S.; Ciardelli, F.; Beltram, F. High-resolution poly(ethylene terephthalate) (PET) hot embossing at low temperature: Thermal, mechanical, and optical analysis of nanopatterned films. Langmuir 2008, 24, 12581–12586.

    Article  Google Scholar 

  50. Juang, Y.-J.; Lee, L. J.; Koelling, K. W. Hot embossing in microfabrication. Part I: Experimental. Polymer Eng. Sci. 2002, 42, 539–550.

    Google Scholar 

  51. Subramani, C.; Ofir, Y.; Patra, D.; Jordan, B. J.; Moran, I. W.; Park, M.-H.; Carter, K. R.; Rotello, V. M. Nanoimprinted polyethyleneimine: A multimodal template for nanoparticle assembly and immobilization. Adv. Funct. Mater. 2009, 19, 2937–2942.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Adelis Foundation for Renewable Energy (No. 2021611) and Israel Science Foundation (No. 1401/15). Viraj Bhingardive thanks the Negev-Tsin Scholarship for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Schvartzman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhingardive, V., Menahem, L. & Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 11, 2705–2714 (2018). https://doi.org/10.1007/s12274-017-1900-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1900-0

Keywords

Navigation