Skip to main content
Log in

Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-free hydrogen as a promising clean energy source can be produced with electrocatalysts via water electrolysis. Oxygen evolution reaction (OER) as anodic reaction determines the overall efficiency of water electrolysis due to sluggish OER kinetics. Thus, it’s much desirable to explore the efficient and earth-abundant transition-metal-based OER electrocatalysts with high current density and superior stability for industrial alkaline electrolyzers. Herein, we demonstrate a significant enhancement of OER kinetics with the hybrid electrocatalyst arrays in alkaline via judiciously combining earth-abundant and ultrathin NiCo-based layered double hydroxide (NiCo LDH) nanosheets with nickel cobalt sulfides (NiCoS) with a facile metal-organic framework (MOF)-template-involved surface sulfidation process. The obtained NiCo LDH/NiCoS hybrid arrays exhibits an extremely low OER overpotential of 308 mV at 100 mA·cm−2, 378 mV at 200 mA·cm−2 and 472 mV at 400 mA·cm−2 in 1 M KOH solution, respectively. A much low Tafel slope of 48 mV·dec−1 can be achieved. Meanwhile, with the current density from 50 to 250 mA·cm−2, the NiCo-LDH/NiCoS hybrid arrays can run for 25 h without any degradation. Our results demonstrate that the construction of hybrid arrays with abundant interfaces of NiCo LDH/NiCoS can facilitate OER kinetics via possible modulation of binding energy of O-containing intermediates in alkaline media. The present work would pave the way for the development of low-cost and efficient OER catalysts and industrial application of water alkaline electrolyzers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

    Article  CAS  Google Scholar 

  2. Duan, J. J.; Zhang, R. L.; Feng, J. J.; Zhang, L.; Zhang, Q. L.; Wang, A. J. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 581, 774–782.

    Article  CAS  Google Scholar 

  3. Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

    Article  CAS  Google Scholar 

  4. Chen, J. M. Carbon neutrality: Toward a sustainable future. Innovation 2021, 2, 100127.

    Google Scholar 

  5. Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

    Article  CAS  Google Scholar 

  6. Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

    Article  CAS  Google Scholar 

  7. Xu, B. Y.; Zhang, Y.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis. Acta Phys. -Chim. Sin. 2021, 37, 2009074.

    Google Scholar 

  8. Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246.

    Article  Google Scholar 

  9. Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

    Article  CAS  Google Scholar 

  10. Zhuang, Q.; Ma, N.; Yin, Z. H.; Yang, X.; Yin, Z.; Gao, J.; Xu, Y.; Gao, Z. R.; Wang, H.; Kang, J. L. et al. Rich surface oxygen vacancies of MnO2 for enhancing electrocatalytic oxygen reduction and oxygen evolution reactions. Adv. Energy Sustainability Res. 2021, 2, 2100030.

    Article  Google Scholar 

  11. Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

    Article  CAS  Google Scholar 

  12. Zhao, Z. H.; Schipper, D. E.; Leitner, A. P.; Thirumalai, H.; Chen, J. H.; Xie, L. X.; Qin, F.; Alam, M. K.; Grabow, L. C.; Chen, S. et al. Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy 2017, 39, 444–453.

    Article  CAS  Google Scholar 

  13. Li, H.; Li, F.; Yu, J. G.; Cao, S. W. 2D/2D FeNi−LDH/g−C3N4 hybrid photocatalyst for enhanced CO2 photoreduction. Acta Phys. -Chim. Sin. 2021, 37, 2010073.

    Google Scholar 

  14. Lu, X. Y.; Xue, H. R.; Gong, H.; Bai, M. J.; Tang, D. M.; Ma, R. Z.; Sasaki, T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020, 12, 86.

    Article  CAS  Google Scholar 

  15. Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383–393.

    Article  CAS  Google Scholar 

  16. Yu, C.; Liu, Z. B.; Han, X. T.; Huang, H. W.; Zhao, C. T.; Yang, J.; Qiu, J. S. NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 2016, 110, 1–7.

    Article  CAS  Google Scholar 

  17. Duan, C. P.; Wang, L. L.; Liu, J. P.; Qu, Y. N.; Gao, J.; Yang, Y. Y.; Wang, B.; Li, J. H.; Zheng, L. L.; Li, M. Z. et al. 3D carbon electrode with hierarchical nanostructure based on NiCoP core-layered double hydroxide shell for supercapacitors and hydrogen evolution. ChemElectroChem 2021, 8, 2272–2281.

    Article  CAS  Google Scholar 

  18. Li, J. H.; Wang, L. L.; Yang, Y. Y.; Wang, B.; Duan, C. P.; Zheng, L. L.; Li, R. L.; Wei, Y. J.; Xu, J. Q.; Yin, Z. Rationally designed NiMn LDH@NiCo2O4 core-shell structures for high energy density supercapacitor and enzyme-free glucose sensor. Nanotechnology 2021, 32, 505710.

    Article  CAS  Google Scholar 

  19. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  CAS  Google Scholar 

  20. Lin, J. H.; Yan, Y. T.; Xu, T. X.; Qu, C. Q.; Li, J.; Cao, J.; Feng, J. C.; Qi, J. L. S doped NiCo2O4 nanosheet arrays by Ar plasma: An efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 2020, 560, 34–39.

    Article  CAS  Google Scholar 

  21. Chauhan, M.; Reddy, K. P.; Gopinath, C. S.; Deka, S. Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal. 2017, 7, 5871–5879.

    Article  CAS  Google Scholar 

  22. Li, S. Z.; Liu, J. Y.; Duan, S.; Wang, T. Y.; Li, Q. Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chin. J. Catal. 2020, 41, 847–852.

    Article  CAS  Google Scholar 

  23. Manjunatha, C.; Srinivasa, N.; Chaitra, S. K.; Sudeep, M.; Kumar, R. C.; Ashoka, S. Controlled synthesis of nickel sulfide polymorphs: Studies on the effect of morphology and crystal structure on OER performance. Mater. Today Energy 2020, 16, 100414.

    Article  Google Scholar 

  24. Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

    Article  CAS  Google Scholar 

  25. Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOxnanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8654–8658.

    Article  CAS  Google Scholar 

  26. Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 24, 1700404.

    Article  CAS  Google Scholar 

  27. Yin, Z.; Zheng, Y. M.; Wang, H.; Li, J. X.; Zhu, Q. J.; Wang, Y.; Ma, N.; Hu, G.; He, B. Q.; Knop-Gericke, A. et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: Toward an advanced electrocatalyst for alcohol oxidation. ACS Nano 2017, 11, 12365–12377.

    Article  CAS  Google Scholar 

  28. Huang, H. W.; Zhou, S.; Yu, C.; Huang, H. L.; Zhao, J. J.; Dai, L. M.; Qiu, J. S. Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ. Sci. 2020, 13, 545–553.

    Article  CAS  Google Scholar 

  29. Wang, L. L.; Yang, Y. Y.; Wang, B.; Duan, C. P.; Li, J. H.; Zheng, L. L.; Li, J. H.; Yin, Z. Bifunctional three-dimensional self-supporting multistage structure CC@MOF−74(NiO)@NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. J. Alloys Compd. 2021, 885, 160899.

    Article  CAS  Google Scholar 

  30. Qin, C. L.; Fan, A. X.; Ren, D. H.; Luan, C. L.; Yang, J. T.; Liu, Y. J.; Zhang, X.; Dai, X. P.; Wang, M. L. Amorphous NiMS (M: Co, Fe or Mn) holey nanosheets derived from crystal phase transition for enhanced oxygen evolution in water splitting. Electrochim. Acta 2019, 323, 134756.

    Article  CAS  Google Scholar 

  31. Wang, X. H.; Huang, F. F.; Rong, F.; He, P.; Que, R. H.; Jiang, S. P. Unique MOF-derived hierarchical MnO2 nanotubes@NiCo−LDH/CoS2 nanocage materials as high performance supercapacitors. J. Mater. Chem. A 2019, 7, 12018–12028.

    Article  CAS  Google Scholar 

  32. Liang, H. F.; Gandi, A. N.; Xia, N.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe−OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

    Article  CAS  Google Scholar 

  33. Guan, N.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, N. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

    Article  CAS  Google Scholar 

  34. Yu, J.; Lv, N. X.; Zhao, L.; Zhang, L. X.; Wang, Z. H.; Liu, Q. Y. Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting. Adv. Mater. Interfaces 2018, 5, 1701396.

    Article  CAS  Google Scholar 

  35. Zhang, L.; Peng, J. H.; Yuan, Y.; Zhang, W.; Peng, K. Bifunctional heterostructure NiCo-layered double hydroxide nanosheets/NiCoP nanotubes/Ni foam for overall water splitting. Appl. Surf. Sci. 2021, 557, 149831.

    Article  CAS  Google Scholar 

  36. Chu, B. X.; Ma, Q. X.; Li, Z. S.; Li, B. L.; Huang, F. R.; Pang, Q.; Chen, Y. B.; Li, B.; Zhang, J. Z. Design and preparation of three-dimensional hetero-electrocatalysts of NiCo-layered double hydroxide nanosheets incorporated with silver nanoclusters for enhanced oxygen evolution reactions. Nanoscale 2021, 13, 11150–11160.

    Article  CAS  Google Scholar 

  37. Xiang, K.; Guo, J.; Xu, J.; Qu, T. T.; Zhang, Y.; Chen, S. Y.; Hao, P. P.; Li, M. H.; Xie, M. J.; Guo, X. F. et al. Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis. ACS Appl. Energy Mater. 2018, 1, 4040–4049.

    Article  CAS  Google Scholar 

  38. Ning, Y. Y.; Ma, D. D.; Shen, Y.; Wang, F. M.; Zhang, X. B. Constructing hierarchical mushroom-like bifunctional NiCo/NiCo2S4@NiCo/Ni foam electrocatalysts for efficient overall water splitting in alkaline media. Electrochim. Acta 2018, 265, 19–31.

    Article  CAS  Google Scholar 

  39. Yan, K. L.; Shang, X.; Li, Z.; Dong, B.; Chi, J. Q.; Liu, Y. R.; Gao, W. K.; Chai, Y. M.; Liu, N. G. Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 17129–17135.

    Article  CAS  Google Scholar 

  40. Sun, Z. M.; Lin, L.; Nan, N. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Amorphous boron oxide coated NiCo layered double hydroxide nanoarrays for highly efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 14257–14263.

    Article  CAS  Google Scholar 

  41. Wu, X. Q.; Lee, H.; Liu, H. Z.; Lu, L. J.; Wu, X. J.; Sun, L. N. NiCo/Ni/CuO nanosheets/nanowires on copper foam as an efficient and durable electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21354–21363.

    Article  CAS  Google Scholar 

  42. Yan, J. G.; Chen, L. G.; Liang, X. Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci. Bull. 2019, 64, 158–165.

    Article  CAS  Google Scholar 

  43. Cao, Y.; Wang, T.; Li, X.; Zhang, L. N.; Luo, Y. L.; Zhang, F.; Asiri, A. M.; Hu, J. M.; Liu, Q.; Sun, X. P. A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2021, 8, 3049–3054.

    Article  CAS  Google Scholar 

  44. Zhang, J. Y.; Bai, X. W.; Wang, T. T.; Xiao, W.; Xi, P. X.; Wang, J. L.; Gao, D. Q.; Wang, J. Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 2019, 11, 2.

    Article  CAS  Google Scholar 

  45. Li, J. T.; Chu, D.; Dong, H.; Baker, D. R.; Jiang, R. Z. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 2020, 142, 50–54.

    Article  CAS  Google Scholar 

  46. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  CAS  Google Scholar 

  47. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Article  Google Scholar 

  48. Zhang, X. Y.; Li, J.; Yang, Y.; Zhang, S.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Zhang, Y. L.; Huang, B. L.; Guo, S. J. et al. Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv. Mater. 2018, 30, 1803551.

    Article  CAS  Google Scholar 

  49. Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, N. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

    Article  CAS  Google Scholar 

  50. Li, Y. Z.; Li, S. W.; Hu, J.; Zhang, Y. Y.; Du, Y. C.; Han, X. J.; Liu, X.; Xu, P. Hollow FeCo−FeCoP@C nanocubes embedded in nitrogen-doped carbon nanocages for efficient overall water splitting. J. Energy Chem. 2021, 53, 1–8.

    Article  Google Scholar 

  51. Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

    Article  CAS  Google Scholar 

  52. Mabayoje, O.; Shoola, A.; Wygant, B. R.; Mullins, N. B. The role of anions in metal chalcogenide oxygen evolution catalysis: Electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 2016, 1, 195–201.

    Article  CAS  Google Scholar 

  53. Liu, Y. X.; Bai, Y.; Yang, W. W.; Ma, J. H.; Sun, K. N. Self-supported electrode of NiCo−LDH/NiCo2S4/CC with enhanced performance for oxygen evolution reaction and hydrogen evolution reaction. Electrochim. Acta 2021, 367, 137534.

    Article  CAS  Google Scholar 

  54. Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

    Article  CAS  Google Scholar 

  55. Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.

    Article  CAS  Google Scholar 

  56. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. 2016, 55, 6702–6707.

    Article  CAS  Google Scholar 

  57. Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; van Aken, P. A.; Cheng, N.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

    Article  CAS  Google Scholar 

  58. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. N.; Wang, Z. N.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  CAS  Google Scholar 

  59. Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. N. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Energy Mater. 2019, 29, 1808367.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51908408, and 21872104), the Natural Science Foundation of Tianjin for Distinguished Young Scholar (No. 20JCJQJC00150) and Innovative Research Team of Tianjin Municipal Education Commission (No. TD13-5008). D. M. acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Wang, Zhen Yin or Ding Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, L., He, H. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 15, 4986–4995 (2022). https://doi.org/10.1007/s12274-022-4144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4144-6

Keywords

Navigation