Skip to main content
Log in

The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) have recently emerged as stars in boosting the synthesis of NH3 from N2, as the catalytic performance of the supported single atoms can be modulated by their coordination environment. In this work, we propose a new strategy, based on comprehensive density functional theory calculations, whereby the coordination environment of a single Mo atom can be tuned by a central heteroatom (X = Fe, Co, Ni, Cu, Zn, Ga, Ge, and As) in the Kegging-type polyoxometalate (POM, (XW12O40)n) substrate to catalyze the electrochemical nitrogen reduction reactions (NRR). Firstly, we demonstrate that the single Mo atom binds strongly to the POM surface oxygen hollow sites without aggregation. Secondly, the adsorption of ⋆N2 on the POM-supported Mo atom is investigated and the reactivity is assessed by calculating the thermodynamics of the NRR. The results show that the POM (X = Co and As) supported Mo atom has high NRR activity with low limiting potentials. Finally, we reveal the origin of the NRR activity by analyzing the electronic structure. The results show that the charge on the O atoms of oxygen hollow sites is affected by the central heteroatom. Due to such effect, it can be found that more d electrons are transferred from Mo supported by POM (X = Co and As) to *N2, thus the N≡N triple bond is activated. This strategy of coordination environment tuning proposed in this work provides a useful guide for the design of efficient catalysts for electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giddey, S.; Badwal, S. P. S.; Munnings, C.; Dolan, M. Ammonia as a renewable energy transportation media. ACS Sustainable Chem. Eng. 2017, 5, 10231–10239.

    Article  CAS  Google Scholar 

  2. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    Article  CAS  Google Scholar 

  3. Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  Google Scholar 

  4. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

  5. Tan, H.; Ji, Q. Q.; Wang, C.; Duan, H. L.; Kong, Y.; Wang, Y.; Feng, S. H.; Lv, L. Y.; Hu, F. C.; Zhang, W. H. et al. Asymmetrical π back-donation of hetero-dicationic Mo4+—Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 2022, 15, 3010–3016.

    Article  CAS  Google Scholar 

  6. Van Der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

    Article  CAS  Google Scholar 

  7. Wang, Z. X.; Yu, Z. G.; Zhao, J. X. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835–12844.

    Article  CAS  Google Scholar 

  8. Huang, C. X.; Lv, S. Y.; Li, C.; Peng, B.; Li, G. L.; Yang, L. M. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res. 2022, 15, 4039–4047.

    Article  CAS  Google Scholar 

  9. Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem. 2021, 60, 249–258.

    Article  CAS  Google Scholar 

  10. Liang, X. Y.; Deng, X. X.; Guo, C.; Wu, C. M. L. Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction. Nano Res. 2020, 13, 2925–2932.

    Article  CAS  Google Scholar 

  11. Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280–2288.

    Article  CAS  Google Scholar 

  12. Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

    Article  CAS  Google Scholar 

  13. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  14. Zhao, X. H.; Zhang, X.; Xue, Z. M.; Chen, W. J.; Zhou, Z.; Mu, T. C. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422.

    Article  CAS  Google Scholar 

  15. Xie, K.; Wang, F. T.; Wei, F. F.; Zhao, J.; Lin, S. Revealing the origin of nitrogen electroreduction activity of molybdenum disulfide supported iron atoms. J. Phys. Chem. C 2022, 126, 5180–5188.

    Article  CAS  Google Scholar 

  16. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  CAS  Google Scholar 

  17. Cheng, Y. W.; Dai, J. H.; Song, Y.; Zhang, Y. M. Single molybdenum atom anchored on 2D Ti2NO2 MXene as a promising electrocatalyst for N2 fixation. Nanoscale 2019, 11, 18132–18141.

    Article  CAS  Google Scholar 

  18. Jiang, M. H.; Tao, A. Y.; Hu, Y.; Wang, L.; Zhang, K. Q.; Song, X. M.; Yan, W.; Tie, Z.; Jin, Z. Crystalline modulation engineering of Ru nanoclusters for boosting ammonia electrosynthesis from dinitrogen or nitrate. ACS Appl. Mater. Interfaces 2022, 14, 17470–17478.

    Article  CAS  Google Scholar 

  19. Wu, T. W.; Melander, M. M.; Honkala, K. Coadsorption of NRR and HER intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction. ACS Catal. 2022, 12, 2505–2512.

    Article  CAS  Google Scholar 

  20. Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

    Article  CAS  Google Scholar 

  21. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  22. Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

    Article  CAS  Google Scholar 

  23. Li, J. J.; Banis, M. N.; Ren, Z. H.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F. P.; Sham, T. K. et al. Unveiling the nature of pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions. Small 2021, 17, 2007245.

    Article  CAS  Google Scholar 

  24. Zafari, M.; Umer, M.; Nissimagoudar, A. S.; Anand, R.; Ha, M. R.; Umer, S.; Lee, G.; Kim, K. S. Unveiling the role of charge transfer in enhanced electrochemical nitrogen fixation at single-atom catalysts on BX sheets (X = As, P, Sb). J. Phys. Chem. Lett. 2022, 13, 4530–4537.

    Article  CAS  Google Scholar 

  25. Cao, H.; Zhang, Z. S.; Chen, J. W.; Wang, Y. G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606–6617.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Liu, T. Y.; Li, Y. F. Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction. Chem. Sci. 2022, 13, 6366–6372.

    Article  CAS  Google Scholar 

  27. Ma, Y.; Ren, Y. J.; Zhou, Y. N.; Liu, W.; Baaziz, W.; Ersen, O.; Pham-Huu, C.; Greiner, M.; Chu, W.; Wang, A. Q. et al. High-density and thermally stable palladium single-atom catalysts for chemoselective hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 21613–21619.

    Article  CAS  Google Scholar 

  28. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    Article  CAS  Google Scholar 

  29. Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

    Article  CAS  Google Scholar 

  30. Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

    Article  CAS  Google Scholar 

  31. Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

    Article  CAS  Google Scholar 

  32. Gawish, M. A.; Drmosh, Q. A.; Onaizi, S. A. Single atom catalysts: An overview of the coordination and interactions with metallic supports. Chem. Rec. 2022, e202100328.

  33. Zhang, X. R.; Xu, X. M.; Yao, S. X.; Hao, C.; Pan, C.; Xiang, X.; Tian, Z. Q.; Shen, P. K.; Shao, Z. P.; Jiang, S. P. Boosting electrocatalytic activity of single atom catalysts supported on nitrogen-doped carbon through N coordination environment engineering. Small 2022, 18, 2105329.

    Article  CAS  Google Scholar 

  34. Yu, M. A.; Feng, Y. X.; Gao, L. Y.; Lin, S. Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: First-principles calculations. Phys. Chem. Chem. Phys. 2018, 20, 20661–20668.

    Article  CAS  Google Scholar 

  35. Cherevan, A. S.; Nandan, S. P.; Roger, I.; Liu, R. J.; Streb, C.; Eder, D. Polyoxometalates on functional substrates: Concepts, synergies, and future perspectives. Adv. Sci. 2020, 7, 1903511.

    Article  CAS  Google Scholar 

  36. Hülsey, M. J.; Baskaran, S.; Ding, S. P.; Wang, S. K.; Asakura, H.; Furukawa, S.; Xi, S. B.; Yu, Q.; Xu, C. Q.; Li, J. et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem. in press, https://doi.org/10.31635/ccschem.022.202201914.

  37. Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. Y.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

    Article  CAS  Google Scholar 

  38. Gao, L. Y.; Wang, F. T.; Yu, M. A.; Wei, F. F.; Qi, J. M.; Lin, S.; Xie, D. Q. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: A DFT prediction. J. Mater. Chem. A 2019, 7, 19838–19845.

    Article  CAS  Google Scholar 

  39. Liao, W. R.; Qi, L.; Wang, Y. L.; Qin, J. Y.; Liu, G. Y.; Liang, S. J.; He, H. Y.; Jiang, L. L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Adv. Funct. Mater. 2021, 31, 2009151.

    Article  CAS  Google Scholar 

  40. López, X.; Carbó, J. J.; Bo, C.; Poblet, J. M. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem. Soc. Rev. 2012, 41, 7537–7571.

    Article  Google Scholar 

  41. López, X.; Maestre, J. M.; Bo, C.; Poblet, J. M. Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40]n relative stability (M = W, Mo and X a main group element). J. Am. Chem. Soc. 2001, 123, 9571–9576.

    Article  Google Scholar 

  42. Zhang, F. Q.; Zhang, X. M.; Wu, H. S.; Jiao, H. J. Structural and electronic properties of hetero-transition-metal keggin anions: A DFT study of α/β-[XW12O40]n (X = CrVIVV, TiIV, FeIII, CoIII, NiIII, CoII, and ZnII) relative stability. J. Phys. Chem. A 2007, 111, 159–166.

    Article  CAS  Google Scholar 

  43. López, X. Effect of protonation, composition and isomerism on the redox properties and electron (de)localization of classical polyoxometalates. Phys. Sci. Rev., in press, https://doi.org/10.1515/psr-2017-0137.

  44. Lin, L. H.; Gao, L. Y.; Xie, K.; Jiang, R.; Lin, S. Rupolyoxometalate as a single-atom electrocatalyst for N2 reduction to NH3 with high selectivity at applied voltage: A perspective from DFT studies. Phys. Chem. Chem. Phys. 2020, 22, 7234–7240.

    Article  CAS  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  46. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  47. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  48. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  49. Wang, S. J.; Feng, Y. X.; Lin, S.; Guo, H. Phosphomolybdic acid supported atomically dispersed transition metal atoms (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au): Stable single atom catalysts studied by density functional theory. RSC Adv. 2017, 7, 24925–24932.

    Article  CAS  Google Scholar 

  50. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

    Article  CAS  Google Scholar 

  51. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  52. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  53. Rod, T. H.; Logadottir, A.; Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 2000, 112, 5343–5347.

    Article  CAS  Google Scholar 

  54. Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

    Article  CAS  Google Scholar 

  55. Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

    Article  CAS  Google Scholar 

  56. Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with mxene under ambient conditions. Joule 2019, 3, 279–289.

    Article  CAS  Google Scholar 

  57. Clayborne, A.; Chun, H. J.; Rankin, R. B.; Greeley, J. Elucidation of pathways for NO electroreduction on Pt(111) from first principles. Angew. Chem., Int. Ed. 2015, 54, 8255–8258.

    Article  CAS  Google Scholar 

  58. Qi, J. M.; Gao, L. Y.; Wei, F. F.; Wan, Q.; Lin, S. Design of a high-performance electrocatalyst for N2 conversion to NH3 by trapping single metal atoms on stepped CeO2. ACS Appl. Mater. Interfaces 2019, 11, 47525–47534.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21973013), the National Natural Science Foundation of Fujian Province, China (No. 2020J02025), and the “Chuying Program” for the Top Young Talents of Fujian Province. The numerical calculations in this paper have been done on Hefei advanced computing center and Supercomputing Center of Fujian.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Jiang, Yucheng Huang or Sen Lin.

Electronic Supplementary Material

12274_2022_4800_MOESM1_ESM.pdf

The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Wei, F., Jiang, R. et al. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 16, 309–317 (2023). https://doi.org/10.1007/s12274-022-4800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4800-x

Keywords

Navigation