Skip to main content
Log in

Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal is regarded as one of the most promising candidates for next-generation batteries. However, lithium dendrite formation and dead lithium accumulation are the critical problems which hinder its practical application. Herein, we constructed a flexible coating membrane layer which could effectively uniform the lithium deposition by isolating lithium metal from electrolyte and regulating the ion flux distribution. After modification, both the Li‖Li symmetric cells (more than 1,400 h at 1 mA·cm−2 and 1 mAh·cm−2) and Li‖Cu cells (more than 500 cycles at 0.5 mA·cm−2 and 0.5 mAh·cm−2, coulombic efficiency over 98%) deliver excellent long-cycle performance with high coulombic efficiency. The high performance is also proved in LiFePO4 (capacity retention increases from 79% to 93% at 2 C after 400 cycles) and NCM811 full cells (capacity retention from 28.5% to 78% at 2 C after 500 cycles). High electro-performance in batteries demonstrates that the multifunctional layer plays a crucial role in stabilizing lithium anode. Moreover, in order to verify the universality of the method, we have extended this facile way to fabricate other types of flexible membranes. This work offers an insight into solving the current obstacles in the application of lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

    Article  CAS  Google Scholar 

  2. Zhang, B.; Wang, L.; Wang, B.; Zhai, Y. J.; Zeng, S. Y.; Zhang, M.; Qian, Y. T.; Xu, L. Q. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium-sulfur batteries. Nano Res. 2022, 15, 4058–4067.

    Article  CAS  Google Scholar 

  3. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni−Fe−P/N-doped carbon Nanobox derived from a Prussian blue analogue as an electrode material for K-Ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  4. Dong, C. F.; Wu, L. Q.; He, Y. Y.; Zhou, Y. L.; Sun, X. P.; Du, W.; Sun, X. Q.; Xu, L. Q.; Jiang, F. Y. Willow-leaf-like ZnSe@N-Doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small 2020, 16, 2004580.

    Article  CAS  Google Scholar 

  5. Wu, C.; Guo, F. H.; Zhuang, L.; Ai, X. P.; Zhong, F. P.; Yang, H. X.; Qian, J. F. Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries. ACS Energy Lett. 2020, 5, 1644–1652.

    Article  CAS  Google Scholar 

  6. Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

    Article  CAS  Google Scholar 

  7. Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.

    Article  CAS  Google Scholar 

  8. Gao, R. M.; Yang, H.; Wang, C. Y.; Ye, H.; Cao, F. F.; Guo, Z. P. Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 25508–25513.

    Article  CAS  Google Scholar 

  9. Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2019, 12, 525–529.

    Article  CAS  Google Scholar 

  10. Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.

    Article  Google Scholar 

  11. Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

    Article  Google Scholar 

  12. Li, P. L.; Dong, X. L.; Li, C.; Liu, J. Y.; Liu, Y.; Feng, W. L.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Anchoring an artificial solid-electrolyte interphase layer on a 3D current collector for high-performance lithium anodes. Angew. Chem., Int. Ed. 2019, 58, 2093–2097.

    Article  CAS  Google Scholar 

  13. Yin, Y. C.; Wang, Q.; Yang, J. T.; Li, F.; Zhang, G. Z.; Jiang, C. H.; Mo, H. S.; Yao, J. S.; Wang, K. H.; Zhou, F. et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun. 2020, 11, 1761.

    Article  CAS  Google Scholar 

  14. Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866–1878.

    Article  CAS  Google Scholar 

  15. Wang, T. S.; Liu, X. B.; Zhao, X. D.; He, P. G.; Nan, C. W.; Fan, L. Z. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 2020, 30, 2000786.

    Article  CAS  Google Scholar 

  16. Bag, S.; Zhou, C. T.; Kim, P. J.; Pol, V. G.; Thangadurai, V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy Storage Mater. 2020, 24, 198–207.

    Article  Google Scholar 

  17. Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

    Article  CAS  Google Scholar 

  18. Li, J. H.; Cai, Y. F.; Wu, H. M.; Yu, Z. A.; Yan, X. Z.; Zhang, Q. H.; Gao, T. Z.; Liu, K.; Jia, X. D.; Bao, Z. N. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003239.

    Article  CAS  Google Scholar 

  19. Baloch, M.; Shanmukaraj, D.; Bondarchuk, O.; Bekaert, E.; Rojo, T.; Armand, M. Variations on Li3N protective coating using ex-situ and in-situ techniques for Lio in Sulphur batteries. Energy Storage Mater. 2017, 9, 141–149.

    Article  Google Scholar 

  20. Lei, M. N.; Wang, J. G.; Ren, L. B.; Nan, D.; Shen, C.; Xie, K. Y.; Liu, X. R. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 30992–30998.

    Article  CAS  Google Scholar 

  21. Lei, M. N.; You, Z. Y.; Ren, L. B.; Liu, X. R.; Wang, J. G. Construction of copper oxynitride nanoarrays with enhanced lithiophilicity toward stable lithium metal anodes. J. Power Sources 2020, 463, 228191.

    Article  CAS  Google Scholar 

  22. Chen, K.; Pathak, R.; Gurung, A.; Adhamash, E. A.; Bahrami, B.; He, Q. Q.; Qiao, H.; Smirnova, A. L.; Wu, J. J.; Qiao, Q. Q. et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater. 2019, 18, 389–396.

    Article  Google Scholar 

  23. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    Article  CAS  Google Scholar 

  24. Hu, J. Q.; Bando, Y.; Zhan, J. H.; Zhi, C. Y.; Golberg, D. Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Lett. 2006, 6, 1136–1140.

    Article  CAS  Google Scholar 

  25. Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

    Article  CAS  Google Scholar 

  26. Dong, Q. Y.; Hong, B.; Fan, H. L.; Jiang, H.; Zhang, K.; Lai, Y. Q. Inducing the formation of in situ Li3N-Rich SEI via nanocomposite plating of Mg3N2 with lithium enables high-performance 3D lithium-metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 627–636.

    Article  CAS  Google Scholar 

  27. Khairallah, F.; Glisenti, A. XPS study of MgO nanopowders obtained by different preparation procedures. Surf. Sci. Spectra 2006, 13, 58–71.

    Article  CAS  Google Scholar 

  28. Li, X. T.; Han, X. Q.; Zhang, H. R.; Hu, R. X.; Du, X. F.; Wang, P.; Zhang, B. T.; Cui, G. L. Frontier orbital energy-customized ionomer-based polymer electrolyte for high-voltage lithium metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 51374–51386.

    Article  CAS  Google Scholar 

  29. Langdon, J.; Manthiram, A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv. Funct. Mater. 2021, 31, 2010267.

    Article  CAS  Google Scholar 

  30. Lin, L. D.; Suo, L. M.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 2021, 11, 2003709.

    Article  CAS  Google Scholar 

  31. Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

    Article  CAS  Google Scholar 

  32. Westover, A. S.; Sacci, R. L.; Dudney, N. Electroanalytical measurement of interphase formation at a Li metal-solid electrolyte interface. ACS Energy Lett. 2020, 5, 3860–3867.

    Article  CAS  Google Scholar 

  33. Huang, H. F.; Gui, Y. N.; Sun, F.; Liu, Z. J.; Ning, H. L.; Wu, C.; Chen, L. B. In situ formed three-dimensional (3D) lithium-boron (Li−B) alloy as a potential anode for next-generation lithium batteries. Rare Metals 2021, 40, 3494–3500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (No. 22071135), the Academy of Sciences large apparatus United Fund (No. U1832187), and the Nature Science Foundation of Shandong Province (No. ZR2019MEM030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhang, B., Wang, L. et al. Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes. Nano Res. 15, 8128–8135 (2022). https://doi.org/10.1007/s12274-022-4516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4516-y

Keywords

Navigation