Skip to main content
Log in

Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium—sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sulfur-host material with abundant pore structure and high catalysis plays an important role in development of high-energy-density lithium—sulfur (Li—S) batteries. Herein, we implanted NiCoP nanoparticles into the N,S co-doped porous carbon derived from petroleum coke (PCPC) to fabricate the sulfur-host of PCPC/NiCoP composites. The high specific surface area of PCPC provides abundant adsorption sites for capturing LiPSs and the NiCoP nanoparticles to improve the polarity and boost the LiPSs conversion kinetics of PCPC. The Li—S cells fabricated with PCPC/NiCoP as sulfur-host deliver high discharge capacity of 1,462.7 mAh·g−1 under the current density of 0.1 C and exhibit ultralong lifespan over 800 cycles under the current density of 1, 2, and even 5 C. Additionally, the prepared composites cathodes deliver an outstanding discharge capacity of 932.5 and 826.4 mAh·g−1 at 0.5 and 1 C with a high sulfur loading of over 3.90 mg·cm−2, and remain stable about 60 cycles. Furthermore, the promoted adsorption-conversion process of polysulfides by introducing NiCoP nanoparticles into PCPC was investigated by experimental and theoretical calculation studies. This work offers a new light for tacking the obstacles of porous carbon-based sulfur-host and propelling the development of petroleum coke-based porous carbon for high performance Li—S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

    Article  CAS  Google Scholar 

  2. Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 2015, 27, 1694–1700.

    Article  CAS  Google Scholar 

  3. Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

    Article  CAS  Google Scholar 

  4. Li, Y.; Li, Z. H.; Zhou, C.; Liao, X. B.; Liu, X. W.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Q. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.

    Article  CAS  Google Scholar 

  5. Wu, T. L.; Qi, J.; Xu, M. Y.; Zhou, D.; Xiao, Z. B. Selective S/Li2S conversion via in-built crystal facet self-mediation: Toward high volumetric energy density lithium-sulfur batteries. ACS Nano 2020, 14, 15011–15022.

    Article  CAS  Google Scholar 

  6. Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 2020, 32, 2000315.

    Article  CAS  Google Scholar 

  7. Zhou, J. Q.; Qian, T.; Xu, N.; Wang, M. F.; Ni, X. Y.; Liu, X. J.; Shen, X. W.; Yan, C. L. Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency. Adv. Mater. 2017, 29, 1701294.

    Article  Google Scholar 

  8. Xia, J. Y.; Hua, W. X.; Wang, L.; Sun, Y. F.; Geng, C. N.; Zhang, C.; Wang, W. C.; Wan, Y.; Yang, Q. H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li-S batteries. Adv. Funct. Mater. 2021, 31, 2101980.

    Article  CAS  Google Scholar 

  9. Chen, K.; Fang, R. P.; Lian, Z.; Zhang, X. Y.; Tang, P.; Li, B.; He, K.; Wang, D. W.; Cheng, H. M.; Sun, Z. H. et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2021, 37, 224–232.

    Article  CAS  Google Scholar 

  10. Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries. Small 2021, 17, 2007446.

    Article  CAS  Google Scholar 

  11. Zhong, M. E.; Guan, J. D.; Sun, J. C.; Shu, X. Q.; Ding, H.; Chen, L. Y.; Zhou, N.; Xiao, Z. B. A cost- and energy density-competitive lithium-sulfur battery. Energy Storage Mater. 2021, 41, 588–598.

    Article  Google Scholar 

  12. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  13. Rybarczyk, M. K.; Peng, H. J.; Tang, C.; Lieder, M.; Zhang, Q.; Titirici, M. M. Porous carbon derived from rice husks as sustainable bioresources: Insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium-sulphur batteries. Green Chem. 2016, 18, 5169–5179.

    Article  CAS  Google Scholar 

  14. Wang, Z. S.; Shen, J. D.; Ji, S. M.; Xu, X. J.; Zuo, S. Y.; Liu, Z. B.; Zhang, D. C.; Hu, R. Z.; Ouyang, L. Z.; Liu, J. et al. B, N codoped graphitic nanotubes loaded with co nanoparticles as superior sulfur host for advanced Li-S batteries. Small 2020, 16, 1906634.

    Article  CAS  Google Scholar 

  15. Qi, J.; Wu, T. L.; Xu, M. Y.; Xiao, Z. B. Hierarchical assembly of CNTs-VSe2-VOx/S for flexible lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 39186–39194.

    Article  CAS  Google Scholar 

  16. Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.

    Article  CAS  Google Scholar 

  17. Kim, S.; Cho, M.; Lee, Y. Multifunctional chitosan-rGO network binder for enhancing the cycle stability of Li-S batteries. Adv. Funct. Mater. 2020, 30, 1907680.

    Article  CAS  Google Scholar 

  18. Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries. J. Energy Chem. 2020, 44, 61–67.

    Article  Google Scholar 

  19. Jin, C. B.; Nai, J. W.; Sheng, O. W.; Yuan, H. D.; Zhang, W. K.; Tao, X. Y.; Lou, X. W. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 2021, 14, 1326–1379.

    Article  CAS  Google Scholar 

  20. Hong, X. D.; Liu, Y.; Fu, J. W.; Wang, X.; Zhang, T.; Wang, S. H.; Hou, F.; Liang, J. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium-sulfur batteries. Carbon 2020, 170, 119–126.

    Article  CAS  Google Scholar 

  21. Sun, C. S.; Guo, D. C.; Shao, Q. J.; Chen, J. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries. Carbon 2021, 177, 430.

    Article  Google Scholar 

  22. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  23. Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013.

    Article  Google Scholar 

  24. Chen, S. X.; Luo, J. H.; Li, N. Y.; Han, X. X.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187–195.

    Article  Google Scholar 

  25. Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem. 2018, 130, 11110–11114.

    Article  Google Scholar 

  26. Xiao, Z. B.; Yang, Z.; Zhang, L. J.; Pan, H.; Wang, R. H. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahighrate, and long-life lithium-sulfur batteries. ACS Nano 2017, 11, 8488–8498.

    Article  CAS  Google Scholar 

  27. Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

    Article  Google Scholar 

  28. Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

    Article  CAS  Google Scholar 

  29. Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2011, 33, 6969–6977.

    Google Scholar 

  30. Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

    Article  CAS  Google Scholar 

  31. Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

    Article  CAS  Google Scholar 

  32. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  33. Gao, X. G.; Huang, Y.; Li, X.; Gao, H.; Li, T. H. SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and “adsorption nest” to enable enhanced lithium-sulfur batteries. Chem. Eng. J. 2021, 420, 129724.

    Article  CAS  Google Scholar 

  34. Li, W. F.; Jiang, Y.; Li, Y. R.; Gao, Q.; Shen, W.; Jiang, Y. M.; He, R. X.; Li, M. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. Chem. Eng. J. 2021, 425, 130651.

    Article  CAS  Google Scholar 

  35. Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metalbased phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 13, 1902104.

    Article  Google Scholar 

  36. Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 13, 3698–3705.

    Article  Google Scholar 

  37. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

    Article  CAS  Google Scholar 

  38. Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731–4741.

    Article  CAS  Google Scholar 

  39. Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

    Article  CAS  Google Scholar 

  40. Zhong, H.; Gao, J. W.; Sa, R. J.; Yang, S. L.; Wu, Z. C.; Wang, R. H. Carbon dioxide conversion upgraded by host-guest cooperation between nitrogen-rich covalent organic framework and imidazolium-based ionic polymer. ChemSusChem 2020, 13, 6050.

    CAS  Google Scholar 

  41. Shan, J.; Huang, J. J.; Li, J. Z.; Li, G.; Zhao, J. T.; Fang, Y. T. Insight into transformation of sulfur species during KOH activation of high sulfur petroleum coke. Fuel 2018, 215, 258–265.

    Article  CAS  Google Scholar 

  42. Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  CAS  Google Scholar 

  43. Qiu, W. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X.; Chen, Z. W. Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 2021, 8, 2003400.

    Article  CAS  Google Scholar 

  44. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 2018, 5, 1700772.

    Article  Google Scholar 

  45. Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 7491–7499.

    Article  CAS  Google Scholar 

  46. Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

    Article  Google Scholar 

  47. Luo, C.; Liang, X.; Sun, Y. F.; Lv, W.; Sun, Y. W.; Lu, Z. Y.; Hua, W. X.; Yang, H. T.; Wang, R. C.; Yan, C. L. et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 290–297.

    Article  Google Scholar 

  48. Liu, J.; Qian, T.; Wang, M. F.; Zhou, J. Q.; Xu, N.; Yan, C. L. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium-sulfur battery. Nano Lett. 2018, 18, 4598–4605.

    Article  CAS  Google Scholar 

  49. Wang, D. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Chen, Z. W.; Wang, X. Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 2021, 81, 105602.

    Article  CAS  Google Scholar 

  50. Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward highperformance Li-S batteries. J. Mater. Chem. A 2018, 6, 11694–11699.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22071135), Academy of Sciences Large Apparatus United Fund of China (No. U1832187), and Natural Science Foundation of Shandong Province (No. ZR2019MEM030 and ZR2021ZD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic Supplementary Material

12274_2021_3996_MOESM1_ESM.pdf

Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium—sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, L., Wang, B. et al. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium—sulfur batteries. Nano Res. 15, 4058–4067 (2022). https://doi.org/10.1007/s12274-021-3996-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3996-5

Keywords

Navigation