Skip to main content
Log in

Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding and manipulating synthetic progress for precisely controlling the components and defects of nanomaterials is an important and challenging task in materials synthesis and nanocatalysis. Metal phosphides (MPs) have been explored as cheap advanced materials in various catalytic fields. MP materials are usually synthesized through gas-solid phosphorization reaction in a trial-to-error manner, but their formation mechanism and the origin of controlled synthesis remain unclear. Here, we combine in situ thermogravimetric analysis-mass spectrometry (TG-MS) and quasi-in situ X-ray powder diffraction (XRD) analysis to probe the transformation mechanism from metal oxides (MOs) to MPs during the phosphorization process mediated by hypophosphite. Temperature, time, and the amount of hypophosphite are revealed as the driven forces while oxophilicity and crystallinity as the impeded forces, simultaneously control the component and defect level of a series of MP (M = Ni, Co, W, Mo, and Nb). The as-obtained WO2.9/WP is proved to be an efficient Z-scheme photocatalyst for oxidative coupling of methane with the total C2+ production and C2H4 selectivity in C2+ products reaching 10.75 µmol·g−1 and 98.25%. Our work provides a fundamental understanding of the phosphorization treatment and thereby guides a viable synthetic route to the controlled synthesis of MOxδ, MP, MOxδ/MP, and MP/M heterostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, Y. F.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M. K.; Liao, J. F.; Kuang, D. B.; Ozin, G. A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149.

    Article  CAS  Google Scholar 

  2. Zhou, X. R.; Li, X.; Prins, R.; Lv, J. Y.; Wang, A. J.; Sheng, Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. J. Catal. 2021, 394, 167–180.

    Article  CAS  Google Scholar 

  3. King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

    Article  CAS  Google Scholar 

  4. Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

    Article  CAS  Google Scholar 

  5. Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

    Article  CAS  Google Scholar 

  6. Liu, P.; Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878.

    Article  CAS  Google Scholar 

  7. Callejas, J. F.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28, 6017–6044.

    Article  CAS  Google Scholar 

  8. Wu, L. B.; Yu, L.; Zhang, F. H.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. F. Heterogeneous bimetallic phosphide Ni2P−Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 2021, 31, 2006484.

    Article  CAS  Google Scholar 

  9. Cao, X. J.; Wang, T. Z.; Jiao, L. F. Transition-metal (Fe, Co, and Ni)-based nanofiber electrocatalysts for water splitting. Adv. Fiber Mater. 2021, 3, 210–228.

    Article  CAS  Google Scholar 

  10. Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

    Article  CAS  Google Scholar 

  11. Yu, J.; Zhong, Y. J.; Wu, X. H.; Sunarso, J.; Ni, M.; Zhou, W.; Shao, Z. P. Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis. Adv. Sci. 2018, 5, 1800514.

    Article  Google Scholar 

  12. Wu, M. Y.; Da, P. F.; Zhang, T.; Mao, J.; Liu, H.; Ling, T. Designing hybrid NiP2/NiO nanorod arrays for efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17896–17902.

    Article  CAS  Google Scholar 

  13. Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

    Article  CAS  Google Scholar 

  14. Li, Z. H.; Zhang, X.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Titania-supported Ni2P/Ni catalysts for selective solar-driven CO hydrogenation. Adv. Mater. 2021, 33, e2103248.

    Article  Google Scholar 

  15. Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

    Article  CAS  Google Scholar 

  16. Zhao, B. H.; Huang, Y.; Liu, D. L.; Yu, Y. F.; Zhang, B. Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP−In2O3 Z-scheme p−n junction. Sci. China Chem. 2020, 63, 28–34.

    Article  CAS  Google Scholar 

  17. Yue, L. C.; Liang, J.; Wu, Z. G.; Zhong, B. H.; Luo, Y. L.; Liu, Q.; Li, T. S.; Kong, Q. Q.; Liu, Y.; Asiri, A. M. et al. Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. J. Mater. Chem. A 2021, 9, 11879–11907.

    Article  CAS  Google Scholar 

  18. Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

    Article  CAS  Google Scholar 

  19. Xiao, C. L.; Gaddam, R. R.; Wu, Y. L.; Sun, X. M.; Liang, Y.; Li, Y. B.; Zhao, X. S. Improvement of the electrocatalytic performance of FeP in neutral electrolytes with fe nanoparticles. Chem. Eng. J. 2021, 408, 127330.

    Article  CAS  Google Scholar 

  20. Lee, S. M.; Kim, J.; Moon, J.; Jung, K. N.; Kim, J. H.; Park, G. J.; Choi, J. H.; Rhee, D. Y.; Kim, J. S.; Lee, J. W. et al. A cooperative biphasic MoOx−MoPx promoter enables a fast-charging lithium-ion battery. Nat. Commun. 2021, 12, 39.

    Article  CAS  Google Scholar 

  21. Niu, Y.; Xiao, M. L.; Zhu, J. B.; Zeng, T. T.; Li, J. D.; Zhang, W. Y.; Su, D.; Yu, A. P.; Chen, Z. W. A “trimurti” heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 9177–9184.

    Article  CAS  Google Scholar 

  22. Zhai, T.; Wan, L. M.; Sun, S.; Chen, Q.; Sun, J.; Xia, Q. Y.; Xia, H. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 2017, 29, 1604167.

    Article  Google Scholar 

  23. Du, M.; Miao, Z. Y.; Li, H. Z.; Zhang, F.; Sang, Y. H.; Wei, L.; Liu, H.; Wang, S. H. Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy 2021, 89, 106477.

    Article  CAS  Google Scholar 

  24. Zhou, D.; Wang, Z.; Long, X.; An, Y. M.; Lin, H.; Xing, Z.; Ma, M.; Yang, S. H. One-pot synthesis of manganese oxides and cobalt phosphides nanohybrids with abundant heterointerfaces in an amorphous matrix for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2019, 7, 22530–22538.

    Article  CAS  Google Scholar 

  25. Kepp, K. P. A quantitative scale of oxophilicity and thiophilicity. Inorg. Chem. 2016, 55, 9461–9470.

    Article  CAS  Google Scholar 

  26. Liu, D. L.; Wang, C. H.; Yu, Y. F.; Zhao, B. H.; Wang, W. C.; Du, Y. H.; Zhang, B. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 2019, 5, 376–389.

    Article  CAS  Google Scholar 

  27. Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

    Article  CAS  Google Scholar 

  28. Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986.

    Article  CAS  Google Scholar 

  29. Chang, S. M.; Hsu, Y. Y.; Chan, T. S. Chemical capture of phosphine by a sol-gel-derived Cu/TiO2 adsorbent—Interaction mechanisms. J. Phys. Chem. C 2011, 115, 2005–2013.

    Article  CAS  Google Scholar 

  30. Sheng, Q.; Li, X.; Prins, R.; Liu, C. J.; Hao, Q. L.; Chen, S. Z. Understanding the reduction of transition-metal phosphates to transition-metal phosphides by combining temperature-programmed reduction and infrared spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 11180–11183.

    Article  CAS  Google Scholar 

  31. Rao, L. F.; Yates, J. T. Jr. Effect of hydroxyl groups on phosphine decomposition on a molybdena/alumina catalyst. J. Phys. Chem. 1993, 97, 5341–5347.

    Article  CAS  Google Scholar 

  32. Li, Z.; Niu, W. H.; Yang, Z. Z.; Kara, A.; Wang, Q.; Wang, M. Y.; Gu, M.; Feng, Z. X.; Du, Y. G.; Yang, Y. Boosting alkaline hydrogen evolution: The dominating role of interior modification in surface electrocatalysis. Energy Environ. Sci. 2020, 13, 3110–3118.

    Article  CAS  Google Scholar 

  33. Quinn, R.; Dahl, T. A.; Diamond, B. W.; Toseland, B. A. Removal of arsine from synthesis gas using a copper on carbon adsorbent. Ind. Eng. Chem. Res. 2006, 45, 6272–6278.

    Article  CAS  Google Scholar 

  34. Pramanik, M.; Tominaka, S.; Wang, Z. L.; Takei, T.; Yamauchi, Y. Mesoporous semimetallic conductors: Structural and electronic properties of cobalt phosphide systems. Angew. Chem., Int. Ed. 2017, 56, 13508–13512.

    Article  CAS  Google Scholar 

  35. Shao, W. W.; Wang, S. M.; Zhu, J. C.; Li, X. D.; Jiao, X. C.; Pan, Y.; Sun, Y. F.; Xie, Y. In-plane heterostructured Ag2S−In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Res. 2021, 14, 4520–4527.

    Article  CAS  Google Scholar 

  36. Liu, D. P.; Li, X.; Wei, L.; Zhang, T. T.; Wang, A. J.; Liu, C. G.; Prins, R. Disproportionation of hypophosphite and phosphite. Dalton Trans. 2017, 46, 6366–6378.

    Article  CAS  Google Scholar 

  37. Zhang, X. Q.; Ptasinska, S. Heterogeneous oxygen-containing species formed via oxygen or water dissociative adsorption onto a gallium phosphide surface. Top. Catal. 2016, 59, 564–573.

    Article  CAS  Google Scholar 

  38. Guliants, V. V.; Holmes, S. A.; Benziger, J. B.; Heaney, P.; Yates, D.; Wachs, I. E. In situ studies of atomic, nano- and macroscale order during VOHPO4·0.5H2O transformation to (VO)2P2O7. J. Mol. Catal. A: Chem. 2001, 172, 265–276.

    Article  CAS  Google Scholar 

  39. Stegmann, N.; Petersen, H.; Weidenthaler, C.; Schmidt, W. Facile synthesis of novel, known, and low-valent transition metal phosphates via reductive phosphatization. J. Mater. Chem. A 2021, 9, 18247–18250.

    Article  CAS  Google Scholar 

  40. Wang, Q. T.; Fang, Z. X.; Zhang, W.; Zhang, D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv. Fiber Mater., in press, https://doi.org/10.1007/s42765-021-00122-7.

  41. Yang, B.; Bi, W. T.; Wan, Y. Y.; Li, X. G.; Huang, M. C.; Yuan, R. L.; Ju, H. X.; Chu, W. S.; Wu, X. J.; He, L. H. et al. Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Sci. China Chem. 2018, 61, 1572–1580.

    Article  CAS  Google Scholar 

  42. Zheng, J. Y.; Lyu, Y.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv. Mater. 2018, 30, 1801773.

    Article  Google Scholar 

  43. Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

    Article  CAS  Google Scholar 

  44. Low, J.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

    Article  Google Scholar 

  45. Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem., Int. Ed. 2017, 56, 2684–2688.

    Article  CAS  Google Scholar 

  46. Kähler, K.; Holz, M. C.; Rohe, M.; Strunk, J.; Muhler, M. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: A TPD and DRIFTS study. ChemPhysChem 2010, 11, 2521–2529.

    Article  Google Scholar 

  47. Li, D. D.; Xu, F.; Tang, X.; Dai, S.; Pu, T. C.; Liu, X. L.; Tian, P. F.; Xuan, F. Z.; Xu, Z.; Wachs, I. E. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 2022, 5, 99–108.

    Article  CAS  Google Scholar 

  48. Qian, Q. Y.; Vogt, C.; Mokhtar, M.; Asiri, A. M.; Al-Thabaiti, S. A.; Basahel, S. N.; Ruiz-Martínez, J.; Weckhuysen, B. M. Combined operando UV/Vis/IR spectroscopy reveals the role of methoxy and aromatic species during the methanol-to-olefins reaction over HSAPO-34. ChemCatChem 2014, 6, 3396–3408.

    Article  CAS  Google Scholar 

  49. Tao, F. F.; Shan, J. J.; Nguyen, L.; Wang, Z. Y.; Zhang, S. R.; Zhang, L.; Wu, Z. L.; Huang, W. X.; Zeng, S. B.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2011, 6, 7798.

    Article  Google Scholar 

  50. Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO−Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.

    Article  CAS  Google Scholar 

  51. Wu, W. C.; Chuang, C. C.; Lin, J. L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J. Phys. Chem. B 2000, 104, 8719–8724.

    Article  CAS  Google Scholar 

  52. Finnie, K. S.; Luca, V.; Moran, P. D.; Bartlett, J. R.; Woolfrey, J. L. Vibrational spectroscopy and EXAFS study of Ti(OC2H5)4 and alcohol exchange in Ti(iso-OC3H7)4. J. Mater. Chem. 2000, 10, 409–418.

    Article  CAS  Google Scholar 

  53. Song, S.; Song, H.; Li, L. M.; Wang, S. Y.; Chu, W.; Peng, K.; Meng, X. G.; Wang, Q.; Deng, B. W.; Liu, Q. X. et al. A selective Au−ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat. Catal. 2021, 4, 1032–1042.

    Article  CAS  Google Scholar 

  54. Have, I. C. T.; Kromwijk, J. J. G.; Monai, M.; Ferri, D.; Sterk, E. B.; Meirer, F.; Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Nos. 21422104 and 21373149) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Electronic Supplementary Material

12274_2022_4489_MOESM1_ESM.pdf

Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhao, B., Sun, M. et al. Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Res. 15, 10134–10141 (2022). https://doi.org/10.1007/s12274-022-4489-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4489-x

Keywords

Navigation