Skip to main content
Log in

Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithium-sulphur (Li-S) batteries. However, serious problems such as low sulphur utilization and fast capacity fade are typically experienced under low electrolyte/sulphur (E/S) ratios and high sulphur loading conditions. To address these issues, a cobalt-containing three-dimensional conductive honeycomb (Co@N-HPC) is proposed in this work as a material for sulphur cathodes. The good electrical conductivity and high density of catalytic sites of (Co@N-HPC) allow fast redox kinetics of lithium polysulfide (LiPS) in high-sulphur-loading electrodes. In addition, the hierarchical structure and good wettability by the electrolyte of Co@N-HPC facilitates electrolyte penetration and LiPS conversion, leading to a high utilization of sulphur under lean electrolyte conditions. Therefore, at a current density of 0.2 C, a volumetric capacity of 1,410 mAh·cm−3 was attained with a sulphur loading of 5.1 mg·cm−2 and an E/S ratio of 5 µL·mg−1. This work provides ideas for the development of lean electrolyte Li-S batteries with a high sulphur loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, R.; Yang, J. L.; Chen, X.; Zhao, Y.; Zhao, W. G.; Qian, G. Y.; Li, S. N.; Xiao, Y. G.; Chen, H.; Ye, Y. S. et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv. Energy Mater. 2020, 10, 1903550.

    Article  CAS  Google Scholar 

  2. Zhang, C. Q.; Du, R. F.; Biendicho, J. J.; Yi, M. J.; Xiao, K.; Yang, D. W.; Zhang, T.; Wang, X.; Arbiol, J.; Llorca, J. et al. Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100432.

    Article  CAS  Google Scholar 

  3. Wang, X. W.; Yang, Y. Y. C.; Lai, C.; Li, R. L.; Xu, H. M.; Tan, D. H. S.; Zhang, K.; Yu, W.; Fjeldberg, O.; Lin, M. et al. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 11359–11369.

    Article  CAS  Google Scholar 

  4. Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2017, 7, 1601630.

    Article  Google Scholar 

  5. Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

    Article  CAS  Google Scholar 

  6. Chen, S. X.; Luo, J. H.; Li, N. Y.; Han, X. X.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187–195.

    Article  Google Scholar 

  7. Wu, X.; Liu, N. N.; Wang, M. X.; Qiu, Y.; Guan, B.; Tian, D.; Guo, Z. K.; Fan, L. S.; Zhang, N. Q. A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 2019, 13, 13109–13115.

    Article  CAS  Google Scholar 

  8. Pei, F.; Lin, L. L.; Ou, D. H.; Zheng, Z. M.; Mo, S. G.; Fang, X. L.; Zheng, N. F. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 2011, 8, 482.

    Article  Google Scholar 

  9. Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

    Article  CAS  Google Scholar 

  10. Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

    Article  CAS  Google Scholar 

  11. Zhang, H.; Yang, L.; Zhang, P. G.; Lu, C. J.; Sha, D. W.; Yan, B. Z.; He, W.; Zhou, M.; Zhang, W.; Pan, L. et al. Mxene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering. Adv. Mater. 2021, 33, 2008447.

    Article  CAS  Google Scholar 

  12. Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.

    Article  Google Scholar 

  13. Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

    Article  CAS  Google Scholar 

  14. Pan, H.; Cheng, Z. B.; Chen, J. Q.; Wang, R. H.; Li, X. J. High sulfur content and volumetric capacity promised by a compact freestanding cathode for high-performance lithium-sulfur batteries. Energy Storage Mater. 2020, 27, 435–442.

    Article  Google Scholar 

  15. Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

    Article  Google Scholar 

  16. Li, G. R.; Lei, W.; Luo, D.; Deng, Y. P.; Deng, Z. P.; Wang, D. L.; Yu, A. P.; Chen, Z. W. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium-sulfur batteries. Energy Environ. Sci. 2018, 11, 2372–2381.

    Article  CAS  Google Scholar 

  17. Li, Z. L.; Xiao, Z. B.; Wang, S. Q.; Cheng, Z. B.; Li, P. Y.; Wang, R. H. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902322.

    Article  Google Scholar 

  18. Guo, J. L.; Pei, H. Y.; Dou, Y.; Zhao, S. Y.; Shao, G. S.; Liu, J. P. Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 2021, 31, 2010499.

    Article  CAS  Google Scholar 

  19. He, L.; Wu, H. Y.; Zhang, W. Y.; Bai, X.; Chen, J. K.; Ikram, M.; Wang, R. H.; Shi, K. Y. High-dispersed Fe2O3/Fe nanoparticles residing in 3D honeycomb-like N-doped graphitic carbon as highperformance room-temperature NO2 sensor. J. Hazard. Mater. 2021, 405, 124252.

    Article  CAS  Google Scholar 

  20. Jin, Q.; Qi, X. Q.; Yang, F. Y.; Jiang, R. N.; Xie, Y.; Qie, L.; Huang, Y. H. The failure mechanism of lithium-sulfur batteries under lean-ether-electrolyte conditions. Energy Storage Mater. 2021, 38, 255–261.

    Article  Google Scholar 

  21. Zeng, P.; Yu, H.; Liu, H.; Li, Y. F.; Zhou, Z. Y.; Zhou, X.; Chen, M. F.; Luo, Z. G.; Chang, B. B.; Guo, X. W. et al. Titanium glycolate nanorods with unsaturated sites as multifunctional layers for advanced lithium-sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 3670–3680.

    Article  CAS  Google Scholar 

  22. Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 2015, 27, 1694–1700.

    Article  CAS  Google Scholar 

  23. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

    Article  CAS  Google Scholar 

  24. Guo, P. Q.; Sun, K.; Shang, X. N.; Liu, D. Q.; Wang, Y. R.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Nb2O5/rGO nanocomposite modified separators with robust polysulfide traps and catalytic centers for boosting performance of lithium-sulfur batteries. Small 2019, 15, 1902363.

    Article  Google Scholar 

  25. Cheng, Z. B.; Chen, Y. L.; Yang, Y. S.; Zhang, L. J.; Pan, H.; Fan, X.; Xiang, S. C.; Zhang, Z. J. Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003718.

    Article  CAS  Google Scholar 

  26. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    Article  CAS  Google Scholar 

  27. An, T. H.; Deng, D. R.; Lei, M.; Wu, Q. H.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858–12864.

    Article  CAS  Google Scholar 

  28. Liu, L.; Yang, F.; Ge, L.; Wang, X.; Cui, L. S.; Yang, H. Facile and low-cost preparation of Co and N co-doped hierarchical porous carbon as a functional separator for Li-S batteries. Electrochim. Acta 2022, 401, 139380.

    Article  CAS  Google Scholar 

  29. Zhang, M. D.; Yu, C.; Zhao, C. T.; Song, X. D.; Han, X. T.; Liu, S. H.; Hao, C.; Qiu, J. S. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium-sulfur battery. Energy Storage Mater. 2016, 5, 223–229.

    Article  CAS  Google Scholar 

  30. Liu, Y. N.; Wei, Z. Y.; Zhong, B.; Wang, H. T.; Xia, L.; Zhang, T.; Duan, X. M.; Jia, D. C.; Zhou, Y.; Huang, X. X. O-, N-coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021, 35, 12–18.

    Article  Google Scholar 

  31. Li, J. B.; Xie, W. F.; Zhang, S. M.; Xu, S. M.; Shao, M. F. Boosting the rate performance of Li-S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 2021, 9, 11151–11159.

    Article  CAS  Google Scholar 

  32. Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

    Article  CAS  Google Scholar 

  33. Wu, F. X.; Srot, V.; Chen, S. Q.; Lorger, S.; van Aken, P. A.; Maier, J.; Yu, Y. 3D honeycomb architecture enables a high-rate and long-life iron(III) fluoride-lithium battery. Adv. Mater. 2019, 31, 1905146.

    Article  CAS  Google Scholar 

  34. Mei, J.; Liao, T.; Spratt, H.; Ayoko, G. A.; Zhao, X. S.; Sun, Z. Q. Honeycomb-inspired heterogeneous bimetallic Co-Mo oxide nanoarchitectures for high-rate electrochemical lithium storage. Small Methods 2019, 3, 1900055.

    Article  Google Scholar 

  35. Cheng, Z. B.; Pan, H.; Chen, J. Q.; Meng, X. P.; Wang, R. H. Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901609.

    Article  Google Scholar 

  36. Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

    Article  CAS  Google Scholar 

  37. Su, L.; Zhang, J. Q.; Chen, Y.; Yang, W.; Wang, J.; Ma, Z. P.; Shao, G. J.; Wang, G. X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy 2021, 85, 105981.

    Article  CAS  Google Scholar 

  38. Wang, M. R.; Zhou, X. F.; Cai, X.; Wang, H. Q.; Fang, Y. P.; Zhong, X. H. Hierarchically porous, ultrathin N-doped carbon nanosheets embedded with highly dispersed cobalt nanoparticles as efficient sulfur host for stable lithium-sulfur batteries. J. Energy Chem. 2020, 50, 106–114.

    Article  Google Scholar 

  39. Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Li, Y. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.

    Article  Google Scholar 

  40. Pan, H.; Cheng, Z. B.; Zhang, X.; Wan, K.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 2020, 8, 21824–21832.

    Article  CAS  Google Scholar 

  41. Niu, H.; Yang, X.; Wang, Q.; Jing, X. Y.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Electrostatic self-assembly of mxene and edge-rich coal layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 2020, 46, 105–113.

    Article  Google Scholar 

  42. Li, Q.; Zhao, Y. H.; Liu, H. D.; Xu, P. D.; Yang, L. T.; Pei, K.; Zeng, Q. W.; Feng, Y. Z.; Wang, P.; Che, R. C. Dandelion-like Mn/Ni Co-doped CoO/C hollow microspheres with oxygen vacancies for advanced lithium storage. ACS Nano 2019, 13, 11921–11934.

    Article  CAS  Google Scholar 

  43. Wu, Z. L.; Chen, S. X.; Wang, L.; Deng, Q.; Zeng, Z. L.; Wang, J.; Deng, S. G. Implanting nickel and cobalt phosphide into well-defined carbon nanocages: A synergistic adsorption-electrocatalysis separator mediator for durable high-power Li-S batteries. Energy Storage Mater. 2021, 38, 381–388.

    Article  Google Scholar 

Download references

Acknowledgements

M. W. and J. S. L. acknowledge the Research Foundation-Flanders (FWO) for a Research Project (No. G0B3218N) and a Research Grant (No. 1529816N). J. S. L., Z. B. C., and M. W. acknowledge the financial support by the National Natural Science Foundation of China (Nos. 21776120 and 22005054). H. P. is grateful to the China Scholarship Council. Funding from State Key Laboratory of Structural Chemistry, and the Natural Science Foundation of Fujian Province (No. 2021J01149) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Cheng, Jiangshui Luo or Michael Wübbenhorst.

Electronic Supplementary Material

12274_2022_4486_MOESM1_ESM.pdf

Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Cheng, Z., Fransaer, J. et al. Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Res. 15, 8091–8100 (2022). https://doi.org/10.1007/s12274-022-4486-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4486-0

Keywords

Navigation