Skip to main content
Log in

SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Observing the morphology of insulating specimen in scanning electron microscope (SEM) is of great significance for the nanoscale semiconductor devices and biological tissues. However, the charging effect will cause image distortion and abnormal contrast when observing insulating specimen in SEM. A typical solution to this problem is using metal coating or water-removable conductive coating. Unfortunately, in both cases the surface of the specimen is covered by a thin layer of conductive material which hides the real surface morphology and is very difficult to be completely removed after imaging. Here we show a convenient, residue-free, and versatile method to observe real surface morphology of insulating specimen without charging effect in SEM with the help of a nanometer-thick film of super-aligned carbon nanotube (SACNT). This thin layer of SACNT film, like metal, can conduct the surface charge on insulating specimen through the sample stage to the ground, thus eliminating the charging effect. SACNT film can also be used as the conductive tape to carry and immobilize insulating powder or particles during SEM imaging. Different from the metal coating, SACNT film is transparent, so that the real microstructure of the insulating specimen surface can be observed. In addition, SACNT film can be easily attached to and peeled off from the surface of specimen without any residue. This convenient, residue-free, and versatile method can open up new possibilities in nondestructive SEM imaging of a wide variety of insulating materials, semiconductor devices, and biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichinokawa, T.; Iiyama, M.; Onoguchi, A.; Kobayashi, T. Charging effect of specimen in scanning electron microscopy. Jpn. J. Appl. Phys. 1974, 13, 1272–1277.

    Article  CAS  Google Scholar 

  2. Rau, E. I.; Fakhfakh, S.; Andrianov, M. V.; Evstafeva, E. N.; Jbara, O.; Rondot, S.; Mouze, D. Second crossover energy of insulating materials using stationary electron beam under normal incidence. Nucl. Instr. Meth. Phys. Res. Sect. B 2008, 266, 719–729.

    Article  CAS  Google Scholar 

  3. Shaffner, T. J.; van Veld, R. D. “Charging” effects in the scanning electron microscope. J. Phys. E:Sci. Instrum. 1971, 4, 633–637.

    Article  CAS  Google Scholar 

  4. Le Bihan, R.; Maussion, M. Study of the surface of ferroelectric crystals with the scanning electron microscope. Ferroelectrics 1974, 7, 307–308.

    Article  CAS  Google Scholar 

  5. Farley, A. N.; Shah, J. S. High-pressure scanning electron microscopy of insulating materials: A new approach. J. Microsc. 1991, 164, 107–126.

    Article  CAS  Google Scholar 

  6. Morin, P.; Pitaval, M.; Vicario, E. Direct observation of insulators with a scanning electron microscope. J. Phys. E:Sci. Instrum. 1976, 9, 1017–1020.

    Article  Google Scholar 

  7. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    Article  CAS  Google Scholar 

  8. Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  CAS  Google Scholar 

  9. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    Article  CAS  Google Scholar 

  10. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Li, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    Article  CAS  Google Scholar 

  11. Jin, X.; Tan, H. X.; Wu, Z. P.; Liang, J. C.; Miao, W. T.; Lian, C. S.; Wang, J. T.; Liu, K.; Wei, H. M.; Feng, C. et al. Continuous, ultra-lightweight, and multipurpose super-aligned carbon nanotube tapes viable over a wide range of temperatures. Nano Lett. 2019, 19, 6756–6764.

    Article  CAS  Google Scholar 

  12. Chen, L.; Lee, H.; Guo, Z. J.; McGruer, N. E.; Gilbert, K. W.; Mall, S.; Leedy, K. D.; Adams, G. G. Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J. Appl. Phys. 2007, 102, 074910.

    Article  Google Scholar 

  13. Naarmann, H.; Kruger, F. J. Arrester for electrodes of electrical energy storage batteries, capacitors, diodes or sensors. German Patent DE10344637, 2005.

  14. Echlin, P. The use of the scanning reflection electron microscope in the study of plant and microbial material. J. Roy. Microsc. Soc. 1968, 88, 407–418.

    Article  CAS  Google Scholar 

  15. Beasley, C. A. Developmental morphology of cotton flowers and seed as seen with the scanning electron microscope. Am. J. Bot. 1975, 62, 584–592.

    Article  Google Scholar 

  16. Tai, S. S. W.; Tang, X. M. Manipulating biological samples for environmental scanning electron microscopy observation. Scanning 2001, 23, 267–272.

    Article  CAS  Google Scholar 

  17. Wang, X. S.; Li, Q. Q.; Xie, J.; Jin, Z.; Wang, J. Y.; Li, Y.; Jiang, K. L.; Fan, S. S. Fabrication of ultralong and electrically uniform singlewalled carbon nanotubes on clean substrates. Nano Lett. 2009, 9, 3137–3141.

    Article  CAS  Google Scholar 

  18. Deng, G. W.; Zhu, D.; Wang, X. H.; Zou, C. L.; Wang, J. T.; Li, H. O.; Cao, G.; Liu, D.; Li, Y.; Xiao, M. et al. Strongly coupled nanotube electromechanical resonators. Nano Lett. 2016, 16, 5456–5462.

    Article  CAS  Google Scholar 

  19. Li, D. Q.; Wei, Y.; Zhang, J.; Wang, J. T.; Lin, Y. H.; Liu, P.; Fan, S. S.; Jiang, K. L. Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Res. 2016, 10, 1896–1902.

    Article  Google Scholar 

  20. Li, D. Q.; Zhang, J.; He, Y. J.; Qin, Y.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q.; Fan, S. S. et al. Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Res. 2017, 10, 1804–1818.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Duanliang Zhou, Qingyu Zhao, and Xiaohua Gu for their valuable helps. This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0208400) and the National Natural Science Foundation of China (NSFC) (Nos. 51788104 and 51727805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Chen, G., Ma, H. et al. SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube. Nano Res. 15, 6407–6415 (2022). https://doi.org/10.1007/s12274-022-4247-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4247-0

Keywords

Navigation