Skip to main content
Log in

A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid-state Li metal batteries with solid electrolytes have built a potential way to solve the safety and low energy density problems of current commercial Li-ion batteries with liquid electrolyte. As a key component of solid-state Li metal batteries, solid electrolytes require high ionic conductivities and good mechanical properties. We have designed a composite solid electrolyte (CSE) consisting of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-Li6.5La3Zr1.5Ta0.5O12 (LLZTO)-succinonitrile (SN) and Li bis(trifluoromethylsulphonyl)imide (LiTFSI). The PVDF-HFP-based porous matrix made by electrospinning ensures good mechanical properties of the electrolyte membrane, and the large proportion of SN filling material makes the electrolyte membrane have an ionic conductivity of 1.11 mS·cm−1 without the addition of liquid electrolyte. The symmetric battery assembled with CSE can be cycled stably for more than 600 h, and the LiFePO4∣CSE∣Li full battery can also be cycled stably for more than 200 cycles. In addition to Li metal batteries, Li-O2 and Li-CO2 batteries that use CSE as electrolytes also have good performances, reflecting the universality of CSE. CSE does not only guarantee good mechanical properties but also obtain a high ionic conductivity. This design provides a new idea for the commercial application of polymer-based solid batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  2. Wang, G.; Xiong, X. H.; Xie, D.; Fu, X. X.; Ma, X. D.; Li, Y. P.; Liu, Y. Z.; Lin, Z.; Yang, C. H.; Liu, M. L. Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Mater. 2019, 23, 701–706.

    Article  Google Scholar 

  3. Jena, A.; Meesala, Y.; Hu, S. F.; Chang, H.; Liu, R. S. Ameliorating interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications. ACS Energy Lett. 2018, 3, 2775–2795.

    Article  CAS  Google Scholar 

  4. Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 720, 4257–4300.

    Article  CAS  Google Scholar 

  5. He, Z. J.; Fan, L. Z. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. Rare Met. 2018, 37, 488–496.

    Article  CAS  Google Scholar 

  6. Shi X. M.; Zeng Z. C.; Sun M. Z.; Huang B. L.; Zhang H. T.; Luo W.; Huang Y. H.; Du Y. P.; Yan C. H. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery. Nano Lett. 2021, 21, 9325–9331.

    Article  CAS  Google Scholar 

  7. Zou, Z. Y.; Li, Y. J.; Lu, Z. H.; Wang, D.; Cui, Y. H.; Guo, B. K.; Li, Y. J.; Liang, X. M.; Feng, J. W.; Li, H. et al. Mobile ions in composite solids. Chem. Rev. 2020, 120, 4169–4221.

    Article  CAS  Google Scholar 

  8. Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.

    Article  CAS  Google Scholar 

  9. Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer 1984, 25, 1291–1296.

    Article  CAS  Google Scholar 

  10. Sun, X. G.; Kerr, J. B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolcules 2006, 39, 362–372.

    Article  CAS  Google Scholar 

  11. Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

    Article  CAS  Google Scholar 

  12. Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2011, 17, 3182–3187.

    Article  CAS  Google Scholar 

  13. Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceaamic”. Nano Energy 2018, 46, 176–184.

    Article  CAS  Google Scholar 

  14. Das, S.; Ghosh, A. Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J. Phys. Chem. B 2017, 121, 5422–5432.

    Article  CAS  Google Scholar 

  15. Chen, G. H.; Zhang, F.; Zhou, Z. M.; Li, J. R.; Tang, Y. B. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 2018, 8, 1801219.

    Article  CAS  Google Scholar 

  16. Shi, J.; Yang, Y. F.; Shao, H. X. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Memb. Sci. 2018, 547, 1–10.

    Article  CAS  Google Scholar 

  17. Yue, H. Y.; Li, J. X.; Wang, Q. X.; Li, C. B.; Zhang, J.; Li, Q. H.; Li, X. N.; Zhang, H. S.; Yang, S. T. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 268–274.

    Article  CAS  Google Scholar 

  18. Li, J.; Lin, Y.; Yao, H. H.; Yuan, C. F.; Liu, J. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. ChemSceChem 2014, 7, 1901–1908.

    Article  CAS  Google Scholar 

  19. Liu, M. Z.; Jin, B. Y.; Zhang, Q. H.; Zhan, X. L.; Chen, F. Q. High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. J. Alloys Compd. 2018, 742, 619–628.

    Article  CAS  Google Scholar 

  20. Liu, K.; Zhang, Q. Q.; Thapaliya, B. P.; Sun, X. G.; Ding, F.; Liu, X. J.; Zhang, J. L.; Dai, S. In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ion. 2020, 345, 115159.

    Article  CAS  Google Scholar 

  21. Wang, J.; Huang, G.; Chen, K.; Zhang, X. B. An adjustable-porosity plastic crystal electrolyte enables high-performance all-solid-state lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 9382–9387.

    Article  CAS  Google Scholar 

  22. Wei, T.; Zhang, Z. H.; Wang, Z. M.; Zhang, Q.; Ye, Y. S.; Lu, J. H.; Rahman, Z. R.; Zhang, Z. U. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 9428–9435.

    Article  CAS  Google Scholar 

  23. Qiu, G. R.; Sun, C. W. A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries. New J. Chem. 2020, 44, 1817–1824.

    Article  CAS  Google Scholar 

  24. Yi, Q.; Zhang, W. Q.; Li, S. Q.; Li, X. Y.; Sun, C. W. A durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode. ACS Appl. Mater. Interfaces 2018, 10, 35039–35046.

    Article  CAS  Google Scholar 

  25. Zha, W. P.; Chen, F.; Yang, D. J.; Shen, Q.; Zhang, L. M. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 2018, 397, 87–94.

    Article  CAS  Google Scholar 

  26. Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

    Article  CAS  Google Scholar 

  27. Choi, J. H.; Lee, C. H.; Yu, J. H.; Doh, C. H.; Lee, S. M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 2015, 274, 458–463.

    Article  CAS  Google Scholar 

  28. Wang, C.; Zhang, H. R.; Dong, S. M.; Hu, Z. L.; Hu, R. X.; Guo, Z. Y.; Wang, T.; Cui, G. L.; Chen, L. Q. High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chem. Mater. 2020, 32, 9167–9175.

    Article  CAS  Google Scholar 

  29. Xue, Y.; Quesnel, D. J. Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Adv. 2016, 6, 7504–7510.

    Article  CAS  Google Scholar 

  30. Kumar, D.; Hashmi, S. A. Ion transport and ion-filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J. Power Sources 2010, 195, 5101–5108.

    Article  CAS  Google Scholar 

  31. Zhang, C. H.; Gamble, S.; Ainsworth, D.; Slawin, A. M. Z.; Andreev, Y. G.; Bruce, P. G. Alkali metal crystalline polymer electrolytes. Nat. Mater. 2009, 8, 580–584.

    Article  CAS  Google Scholar 

  32. Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016, 22, 278–289.

    Article  CAS  Google Scholar 

  33. Wong, D. H. C.; Thelen, J. L.; Fu, Y. B.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. USA 2014, 111, 3327–3331.

    Article  CAS  Google Scholar 

  34. Hori, M.; Aoki, Y.; Maeda, S.; Tatsumi, R.; Hayakawa, S. Thermal stability of ionic liquids as an electrolyte for lithium-ion batteries. ECS Trane. 2010, 25, 147.

    Article  CAS  Google Scholar 

  35. Xiao, W.; Li X. H.; Wang Z. X.; Guo H. J.; Wang J. X.; Huang S. L.; Gan L. Physicochemical properties of a novel composite polymer electrolyte doped with vinyltrimethoxylsilane-modified nano-La2O3. J. Rare Earths 2012, 30, 1034–1040.

    Article  CAS  Google Scholar 

  36. Oh, S.; Nguyen, V. H.; Bui, V. T.; Nam, S.; Mahato, M.; Oh, I. K. Intertwined nanosponge solid-state polymer electrolyte for rollable and foldable lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 11657–11668.

    Article  CAS  Google Scholar 

  37. Zhang Q.; Gao Z. Q.; Shi X. M.; Zhang C.; Liu K.; Zhang J.; Zhou L.; Ma C. J.; Du Y. P. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10.

    Article  CAS  Google Scholar 

  38. Rey, I.; Lassègues, J. C.; Grondin, J.; Servant, L. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim. Acta 1998, 43, 1505–1510.

    Article  CAS  Google Scholar 

  39. Zhang, X. L.; Gong, Y. D.; Li, S. Q.; Sun, C. W. Porous perovskite La0.6Sr0.4Co0.8Mn0.2O3 nanofibers loaded with RuO2 nanosheets as an efficient and durable bifunctional catalyst for rechargeable Li-O2 batteries. ACS Catal. 2017, 7, 7737–7747.

    Article  CAS  Google Scholar 

  40. Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal—CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

    Article  CAS  Google Scholar 

  41. Shi Q. L.; Zhang H.; Li T. J.; Yu F. L.; Hou H. J.; Han P. D. Preparation and characterization of LSO-SDC composite electrolytes. J. Rare Earths 2021, 33, 304–309.

    Article  CAS  Google Scholar 

  42. Wei W. Q.; Liu B. Q.; Gan Y. Q.; Ma H. J.; Cui D. W. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021, 40, 409–416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. 21771156), the National Natural Science Foundation of China/RGC Joint Research Scheme (No. N_PolyU502/21), and the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolong Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, G., Shi, Y. & Huang, B. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 15, 5153–5160 (2022). https://doi.org/10.1007/s12274-022-4183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4183-z

Keywords

Navigation