Skip to main content
Log in

N-doped MoS2 via assembly transfer on an elastomeric substrate for high-photoresponsivity, air-stable and stretchable photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a direct-bandgap semiconductor, single-layer MoS2 has gained great attention in optoelectronics, especially wearable photodetectors. However, MoS2 exhibits poor photoresponsivity on a stretchable substrate due to intrinsic low carrier density and a large number of scattering centers on polymer substrates. Few air-stable yet strong dopants on MoS2 has been reported. In addition, the roughness, hydrophobicity and susceptibility to organic solvents of polymer surface are critical roadblocks in the development of stretchable high-performance MoS2 photodetectors. Here, we realize a stretchable and stable photodetector with high photoresponsivity by combining n-type dopant ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) phenyl) dimethylamine, N-DMBI) with MoS2 and assembly transfer technique. It is found electron tends to transfer from N-DMBI to MoS2 and the effect is maintained after the integrable photodetector transferred directly by elastic substrate styrene-ethylene-butylene-styrene (SEBS), even after being exposed to the air for 20 days, which benifits greatly from the encapsulation of SEBS. The increased carrier density greatly promotes carrier injection efficiency and photogenerated electron-hole separation efficiency at the metal-semiconductor interface, thus offering a significantly improved photoresponsivity in MoS2 photodetectors. Moreover, such photodetector shows great durability to stretch, which can remain functional after stretched 100 cycles within its stretch limit. Our strategy opens a new avenue to fabricate high-photoresponsivity stretchable electronics or optoelectronics of two-dimensional (2D) materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.

    Article  CAS  Google Scholar 

  2. Kim, J.; Kim, J.; Jo, S.; Kang, J. G.; Jo, J. W.; Lee, M.; Moon, J.; Yang, L.; Kim, M. G.; Kim, Y. H. et al. Ultrahigh detective heterogeneous photosensor arrays with In-pixel signal boosting capability for large-area and skin-compatible electronics. Adv. Mater. 2016, 28, 3078–3086.

    Article  CAS  Google Scholar 

  3. Koppelhuber, A.; Bimber, O. LumiConSense: A transparent, flexible, and scalable thin-film sensor. IEEE Comput. Graph. Appl. 2014, 34, 98–102.

    Article  Google Scholar 

  4. Lee, M. E.; Armani, A. M. Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 2016, 1, 1251–1255.

    Article  CAS  Google Scholar 

  5. Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

    Article  Google Scholar 

  6. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  7. Wang, S. H; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z. N. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

    Article  CAS  Google Scholar 

  8. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  9. Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat 2021, 3, 133–154.

    Article  CAS  Google Scholar 

  10. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  11. Choi, C.; Choi, M. K.; Liu, S. Y.; Kim, M. S.; Park, O. K.; Im, C.; Kim, J.; Qin, X. L.; Lee, G. J.; Cho, K. W. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664.

    Article  Google Scholar 

  12. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

    Article  CAS  Google Scholar 

  13. Pak, S.; Jang, A. R.; Lee, J.; Hong, J.; Giraud, P.; Lee, S.; Cho, Y.; An, G. H.; Lee, Y. W.; Shin, H. S. et al. Surface functionalization-induced photoresponse characteristics of monolayer MoS2 for fast flexible photodetectors. Nanoscale 2019, 11, 4726–4734.

    Article  CAS  Google Scholar 

  14. Sun, B.; Shi, T. L.; Liu, Z. Y.; Wu, Y. N.; Zhou, J. X.; Liao, G. L. Large-area flexible photodetector based on atomically thin MoS2/graphene film. Mater. Des. 2018, 154, 1–7.

    Article  CAS  Google Scholar 

  15. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

    Article  CAS  Google Scholar 

  16. Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

    Article  CAS  Google Scholar 

  17. Huang, Y.; Zhuge, F.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

    Article  CAS  Google Scholar 

  18. Zhao, Y. D.; Bertolazzi, S.; Samorì, P. A universal approach toward light-responsive two-dimensional electronics: Chemically tailored hybrid van der Waals heterostructures. ACS Nano 2019, 13, 4814–4825.

    Article  CAS  Google Scholar 

  19. Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.

    Article  CAS  Google Scholar 

  20. Guo, R.; Li, Q.; Zheng, Y.; Lei, B.; Sun, H. C.; Hu, Z. H.; Zhang, J. L.; Wang, L.; Longhi, E.; Barlow, S. et al. Degenerate electron-doping in two-dimensional tungsten diselenide with a dimeric organometallic reductant. Mater. Today 2019, 30, 26–33.

    Article  CAS  Google Scholar 

  21. Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q. H.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.

    Article  CAS  Google Scholar 

  22. Zhu, X. Q.; Zhang, M. T.; Yu, A.; Wang, C. H.; Cheng, J. P. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile. J. Am. Chem. Soc. 2008, 130, 2501–2516.

    Article  CAS  Google Scholar 

  23. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  24. Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  26. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  27. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

    Article  CAS  Google Scholar 

  28. Zeng, Y.; Zheng, W. Y.; Guo, Y.; Han, G. C.; Yi, Y. P. Doping mechanisms of N-DMBI-H for organic thermoelectrics: Hydrogen removal vs. hydride transfer. J. Mater. Chem. A 2020, 8, 8323–8328.

    Article  CAS  Google Scholar 

  29. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  30. Wei, P.; Oh, J. H.; Dong, G. F.; Bao, Z. N. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 2010, 132, 8852–8853.

    Article  CAS  Google Scholar 

  31. Kwon, S. J.; Han, T. H.; Kim, Y. H.; Ahmed, T.; Seo, H. K.; Kim, H.; Kim, D. J.; Xu, W. T.; Hong, B. H.; Zhu, J. X. et al. Solution-processed n-type graphene doping for cathode in inverted polymer light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 4874–4881.

    Article  CAS  Google Scholar 

  32. Chee, S. S.; Lee, W. J.; Jo, Y. R.; Cho, M. K.; Chun, D.; Baik, H.; Kim, B. J.; Yoon, M. H.; Lee, K.; Ham, M. H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147.

    Article  CAS  Google Scholar 

  33. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  Google Scholar 

  34. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

    Article  CAS  Google Scholar 

  35. Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Hight Walker, A. R.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

    Article  Google Scholar 

  36. Mak, K. F.; He, K. L.; Lee, C. G.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  CAS  Google Scholar 

  37. Heo, K.; Jo, S. H.; Shim, J.; Kang, D. H.; Kim, J. H.; Park, J. H. Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces 2018, 10, 32765–32772.

    Article  CAS  Google Scholar 

  38. Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

    Article  CAS  Google Scholar 

  39. Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

    Article  CAS  Google Scholar 

  40. Tsai, M. Y.; Tarasov, A.; Hesabi, Z. R.; Taghinejad, H.; Campbell, P. M.; Joiner, C. A.; Adibi, A.; Vogel, E. M. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 2015, 7, 12850–12855.

    Article  CAS  Google Scholar 

  41. Salvatore, G. A.; Münzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Büthe, L.; Ensslin, K.; Tröster, G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 2013, 7, 8809–8815.

    Article  CAS  Google Scholar 

  42. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

  43. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

    Article  Google Scholar 

  44. Lee, S. Y.; Kim, U. J.; Chung, J.; Nam, H.; Jeong, H. Y.; Han, G. H.; Kim, H.; Oh, H. M.; Lee, H.; Kim, H. et al. Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 2016, 10, 6100–6107.

    Article  CAS  Google Scholar 

  45. Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.

    Article  CAS  Google Scholar 

  46. Kim, R. H.; Leem, J.; Muratore, C.; Nam, S.; Rao, R.; Jawaid, A.; Durstock, M.; Mcconney, M.; Drummy, L.; Rai, R. et al. Photonic crystallization of two-dimensional MoS2 for stretchable photodetectors. Nanoscale 2019, 11, 13260–13268.

    Article  CAS  Google Scholar 

  47. Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

    Article  CAS  Google Scholar 

  48. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  CAS  Google Scholar 

  49. Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

    Article  CAS  Google Scholar 

  50. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

    Article  CAS  Google Scholar 

  51. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  52. Prades, J. D.; Hernandez-Ramirez, F.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Morante, J. R. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 2008, 19, 465501.

    Article  CAS  Google Scholar 

  53. Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

    Article  CAS  Google Scholar 

  54. Kang, P.; Wang, M. C.; Knapp, P. M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639–4645.

    Article  CAS  Google Scholar 

  55. Mu, J. K.; Hou, C. Y.; Wang, G.; Wang, X. M.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Zhu, M. F. An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors. Adv. Mater. 2016, 28, 9491–9497.

    Article  CAS  Google Scholar 

  56. Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H. I.; Liao, Y. M.; Inbaraj, C. R. P.; Liou, Y. R.; Kataria, M.; Lu, K. L. et al. Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors. Adv. Funct. Mater. 2018, 28, 1804802.

    Article  Google Scholar 

  57. Lan, C. Y.; Zhou, Z. Y.; Zhou, Z. F.; Li, C.; Shu, L.; Shen, L. F.; Li, D. P.; Dong, R. T.; Yip, S.; Ho, J, C. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018, 11, 3371–3384.

    Article  CAS  Google Scholar 

  58. Kim, B. H.; Yoon, H.; Kwon, S. H.; Kim, D. W.; Yoon, Y. J. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 2021, 184, 109950.

    Article  CAS  Google Scholar 

  59. Bao, Y. X.; Han, J. F.; Li, H. X.; Huang, K. Flexible, heat-resistant photodetector based on MoS2 nanosheets thin film on transparent muscovite mica substrate. Nanotechnology 2021, 32, 025206.

    Article  CAS  Google Scholar 

  60. Ma, Y. F.; Liu, D.; Hao, J. X.; Wang, L.; Wang, W. Highperformance flexible WSe2 flake photodetector with broadband detection capability. AIP Adv. 2020, 10, 125027.

    Article  CAS  Google Scholar 

  61. Pradhan, N. R.; Garcia, C.; Holleman, J.; Rhodes, D.; Parker, C.; Talapatra, S.; Terrones, M.; Balicas, L.; McGill, S. A. Photoconductivity of few-layered p-WSe2 phototransistors via multiterminal measurements. 2D Mater. 2016, 3, 041004.

    Article  Google Scholar 

  62. Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Qi, R. J.; Gu, L. Y.; Zheng, Z. Thermal evaporation of large-area SnS2 thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl. Mater. Interfaces 2020, 12, 24940–24950.

    Article  CAS  Google Scholar 

  63. Han, J. F.; Li, J. Y.; Liu, W. L.; Li, H. X.; Fan, X. Y.; Huang, K. A novel flexible broadband photodetector based on flower-like MoS2 microspheres. Optics Commun. 2020, 473, 125931.

    Article  CAS  Google Scholar 

  64. Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

    Article  Google Scholar 

  65. Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21903007 and 22072006), Young Thousand Talents Program (No. 110532103), Beijing Normal University Startup funding (No. 312232102), Beijing Municipal Science & Technology Commission (No. Z191100000819002) and the Fundamental Research Funds for the Central Universities (No. 310421109). The authors also thank Prof. Liying Jiao from Tsinghua University for fruitful discussions and Prof. Hailin Peng and Prof. Yanfeng Zhang from Peking University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liu.

Electronic Supplementary Material

12274_2022_4146_MOESM1_ESM.pdf

N-doped MoS2 via assembly transfer on an elastomeric substrate for high-photoresponsivity, air-stable and stretchable photodetector

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Zhang, W., Wang, X. et al. N-doped MoS2 via assembly transfer on an elastomeric substrate for high-photoresponsivity, air-stable and stretchable photodetector. Nano Res. 15, 9866–9874 (2022). https://doi.org/10.1007/s12274-022-4146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4146-4

Keywords

Navigation