Skip to main content
Log in

Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible photodetectors (PDs) are indispensable components for next-generation wearable electronics. Recently, two-dimensional (2D) materials have been implemented as functional flexible optoelectronic devices due to their characteristics of atomically thin layers, excellent flexibility, and strain sensitivity. In this work, we developed a flexible photodetector based on MoS2/NiO heterojunction, and Fabry-Perot (F-P) and piezo-phototronic effect have been employed to enhance the responsivity (R) and external quantum efficiency (EQE) of the devices. The F-P effect is utilized to improve the optical absorption of the MoS2, resulting in an enhancement in the photoluminescence (PL) of monolayer MoS2 and the EQE of the photodetector by 30 and 130 times, respectively. The flexible photodetector exhibits an ultrahigh detectivity (D*) of 2.6 × 1,014 Jones, which is the highest value ever reported for flexible MoS2 PDs. The piezo-potential of monolayer MoS2 decreases the valence band offset at the interface of MoS2/NiO, which increases the transfer efficiency of the photon-generated carriers significantly. Under 1.17% tensile strain, the R of the flexible photodetector can be enhanced by 271%. This research may provide a universal strategy for the design and performance optimization of 2D materials heterostructures for flexible optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.

    Article  CAS  Google Scholar 

  2. Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

    Article  CAS  Google Scholar 

  3. Du, J. L.; Yu, H. H.; Liu, B. S.; Hong, M. Y.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Strain engineering in 2D material-based flexible optoelectronics. Small Methods 2021, 5, 2000919.

    Article  CAS  Google Scholar 

  4. Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.

    Article  Google Scholar 

  5. Xiao, Q.; Hu, C. X.; Wu, H. R.; Ren, Y. Y.; Li, X. Y.; Yang, Q. Q.; Dun, G. H.; Huang, Z. P.; Peng, Y.; Yan, F. et al. Antimonene-based flexible photodetector. Nanoscale Horiz. 2020, 5, 124–130.

    Article  CAS  Google Scholar 

  6. Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

    Article  CAS  Google Scholar 

  7. Song, J. K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D. H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937.

    Article  CAS  Google Scholar 

  8. Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G. X.; Li, G. J. X.; Lee, P. M.; Cai, Y. Q.; Li, S.; Shepherd, R. F. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 2020, 19, 182–188.

    Article  CAS  Google Scholar 

  9. Colace, L.; Masini, G.; Assanto, G.; Luan, H. C.; Wada, K.; Kimerling, L. C. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 2000, 76, 1231–1233.

    Article  CAS  Google Scholar 

  10. Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

    Article  Google Scholar 

  11. Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.

    Article  Google Scholar 

  12. Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of gallium oxides by crystalline disorder. Mater. Today Phys. 2021, 18, 100369.

    Article  CAS  Google Scholar 

  13. Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

    Article  CAS  Google Scholar 

  14. Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind positionsensitive detectors. Sci. China Phys., Mech. Astron. 2020, 63, 117312.

    Article  CAS  Google Scholar 

  15. Chen, X. X.; Xiao, X. H.; Shi, Z. F.; Du, R.; Li, X. J. Self-powered ultraviolet photodetection realized by GaN/Si nanoheterostructure based on silicon nanoporous pillar array. J. Alloy. Compd. 2018, 767, 368–373.

    Article  CAS  Google Scholar 

  16. Dong, T.; Simões, J.; Yang, Z. C. Flexible photodetector based on 2D materials: Processing, architectures, and applications. Adv. Mater. Interfaces 2020, 7, 1901657.

    Article  CAS  Google Scholar 

  17. Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

    Article  CAS  Google Scholar 

  18. Pei, Y. F.; Chen, R.; Xu, H.; He, D.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 2021, 14, 1819–1839.

    Article  CAS  Google Scholar 

  19. Liu, Y. M.; Li, X.; Guo, Y.; Yang, T.; Chen, K. J.; Lin, C. N.; Wei, J. Y.; Liu, Q.; Lu, Y. J.; Dong, L. et al. Modulation on the electronic properties and band gap of layered ReSe2 via strain engineering. J. Alloys Compd. 2020, 827, 154364.

    Article  CAS  Google Scholar 

  20. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  21. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  22. Guo, Y.; Li, B.; Huang, Y.; Du, S.; Sun, C.; Luo, H. L.; Liu, B. L.; Zhou, X. J.; Yang, J. L.; Li, J. J. et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020, 13, 2072–2078.

    Article  CAS  Google Scholar 

  23. Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

    Article  CAS  Google Scholar 

  24. Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

    Article  CAS  Google Scholar 

  25. Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392–2398.

    Article  CAS  Google Scholar 

  26. Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Schrenk, W.; Strasser, G. et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777.

    Article  CAS  Google Scholar 

  27. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  28. Yamamoto, M.; Ueno, K.; Tsukagoshi, K. Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer. Appl. Phys. Lett. 2018, 112, 181902.

    Article  Google Scholar 

  29. Kundu, A.; Rani, R.; Raturi, M.; Hazra, K. S. Photogating-induced controlled electrical response in 2D black phosphorus. ACS Appl. Electron. Mater. 2020, 2, 3562–3570.

    Article  CAS  Google Scholar 

  30. Yang, Y. J.; Li, J. S.; Choi, S.; Jeon, S.; Cho, J. H.; Lee, B. H.; Lee, S. High-responsivity PtSe2 photodetector enhanced by photogating effect. Appl. Phys. Lett. 2021, 118, 013103.

    Article  CAS  Google Scholar 

  31. Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

    Article  CAS  Google Scholar 

  32. Zhao, X. H.; Duan, Y. S.; Li, K.; Fang, Y. C.; Song, X. X.; Zhang, H. T.; Wang, P.; Yan, Z. X. Sandwiched PbS/Au/PbS phototransistor for surface plasmon enhanced near-infrared photodetection. J. Alloys Compd. 2020, 815, 152331.

    Article  CAS  Google Scholar 

  33. Jeong, H. Y.; Kim, U. J.; Kim, H.; Han, G. H.; Lee, H.; Kim, M. S.; Jin, Y.; Ly, T. H.; Lee, S. Y.; Roh, Y. G. et al. Optical gain in MoS2 via coupling with nanostructured substrate: Fabry-Pérot interference and plasmonic excitation. ACS Nano 2016, 10, 8192–8198.

    Article  CAS  Google Scholar 

  34. Wang, Q. X.; Guo, J.; Ding, Z. J.; Qi, D. Y.; Jiang, J. Z.; Wang, Z.; Chen, W.; Xiang, Y. J.; Zhang, W. J.; Wee, A. T. S. Fabry-Pérot cavity-enhanced optical absorption in ultrasensitive tunable photodiodes based on hybrid 2D materials. Nano Lett. 2017, 17, 7593–7598.

    Article  CAS  Google Scholar 

  35. Yan, W.; Shresha, V. R.; Jeangros, Q.; Azar, N. S.; Balendhran, S.; Ballif, C.; Crozier, K.; Bullock, J. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes. ACS Nano 2020, 14, 13645–13651.

    Article  CAS  Google Scholar 

  36. Huang, X.; Feng, X. W.; Chen, L.; Wang, L.; Tan, W. C.; Huang, L.; Ang, K. W. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 2019, 62, 667–673.

    Article  CAS  Google Scholar 

  37. Bayan, S.; Gogurla, N.; Ghorai, A.; Ray, S. K. Förster resonance energy transfer mediated charge separation in plasmonic 2D/1D hybrid heterojunctions of Ag-C3N4/ZnO for enhanced photodetection. ACS Appl. Nano Mater. 2019, 2, 3848–3856.

    Article  CAS  Google Scholar 

  38. Zhao, J. C.; Qiu, M.; Yu, X. C.; Yang, X. M.; Jin, W.; Lei, D. Y.; Yu, Y. T. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity. Adv. Opt. Mater. 2019, 7, 1900646.

    Article  CAS  Google Scholar 

  39. Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Pérot nanocavities. Nat. Commun. 2020, 11, 302.

    Article  Google Scholar 

  40. Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

    Article  CAS  Google Scholar 

  41. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  42. Park, S.; Park, J.; Kim, Y. G.; Bae, S.; Kim, T. W.; Park, K. I.; Hong, B. H.; Jeong, C. K.; Lee, S. K. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 2020, 78, 105266.

    Article  CAS  Google Scholar 

  43. Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105.

    Article  CAS  Google Scholar 

  44. Dai, M. J.; Zheng, W.; Zhang, X.; Wang, S. M.; Lin, J. H.; Li, K.; Hu, Y. X.; Sun, E. W.; Zhang, J.; Qiu, Y. F. et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Lett. 2020, 20, 201–207.

    Article  CAS  Google Scholar 

  45. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    Article  CAS  Google Scholar 

  46. Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

    Article  CAS  Google Scholar 

  47. Zheng, D. Q.; Zhao, Z. M.; Huang, R.; Nie, J. H.; Li, L. J.; Zhang, Y. High-performance piezo-phototronic solar cell based on two-dimensional materials. Nano Energy 2017, 32, 448–453.

    Article  CAS  Google Scholar 

  48. Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.

    Article  CAS  Google Scholar 

  49. Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463–8468.

    Article  CAS  Google Scholar 

  50. Hu, Y. F.; Zhang, Y.; Lin, L.; Ding, Y.; Zhu, G.; Wang, Z. L. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 2012, 12, 3851–3856.

    Article  CAS  Google Scholar 

  51. Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285–8291.

    Article  CAS  Google Scholar 

  52. Xu, L.; Zhao, L. Y.; Wang, Y. S.; Zou, M. C.; Zhang, Q.; Cao, A. Y. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619–1624.

    Article  CAS  Google Scholar 

  53. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  54. Wang, W. F.; Shu, H. B.; Wang, J.; Cheng, Y. C.; Liang, P.; Chen, X. S. Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces 2020, 12, 9563–9571.

    Article  CAS  Google Scholar 

  55. Bucher, T.; Vaskin, A.; Mupparapu, R.; Löchner, F. J. F.; George, A.; Chong, K. E.; Fasold, S.; Neumann, C.; Choi, D. Y.; Eilenberger, F. et al. Tailoring photoluminescence from MoS2 monolayers by Mieresonant metasurfaces. ACS Photonics 2019, 6, 1002–1009.

    Article  CAS  Google Scholar 

  56. Kats, M. A.; Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photon. Rev. 2016, 10, 735–749.

    Article  CAS  Google Scholar 

  57. Yoo, T. J.; Kim, S. Y.; Kwon, M. G.; Kim, C.; Chang, K. E.; Hwang, H. J.; Lee, B. H. A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector. Laser Photon. Rev. 2021, 15, 2000557.

    Article  CAS  Google Scholar 

  58. Huo, N. J.; Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 2018, 30, 1801164.

    Article  Google Scholar 

  59. Wu, J. M.; Chang, W. E. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces 2014, 6, 14286–14292.

    Article  CAS  Google Scholar 

  60. Singh, S. D.; Das, A.; Ajimsha, R. S.; Singh, M. N.; Upadhyay, A.; Kamparath, R.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K. et al. Studies on structural and optical properties of pulsed laser deposited NiO thin films under varying deposition parameters. Mat. Sci. Semicon. Proc. 2017, 66, 186–190.

    Article  CAS  Google Scholar 

  61. Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

    Article  Google Scholar 

  62. Li, L.; Shang, Y. Y.; Lv, S. Y.; Li, Y. X.; Fang, Y.; Li, H. B. Flexible and highly responsive photodetectors based on heterostructures of MoS2 and all-carbon transistors. Nanotechnology 2021, 62, 315209.

    Article  Google Scholar 

  63. Zhang, K.; Peng, M. Z.; Wu, W.; Guo, J. M.; Gao, G. Y.; Liu, Y. D.; Kou, J. Z.; Wen, R. M.; Lei, Y.; Yu, A. F. et al. A flexible p-CuO/n-MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 2017, 4, 274–280.

    Article  CAS  Google Scholar 

  64. Pak, S.; Jang, A. R.; Lee, J.; Hong, J.; Giraud, P.; Lee, S.; Cho, Y.; An, G. H.; Lee, Y. W.; Shin, H. S. et al. Surface functionalization-induced photoresponse characteristics of monolayer MoS2 for fast flexible photodetectors. Nanoscale 2019, 11, 4726–4734.

    Article  CAS  Google Scholar 

  65. Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

    Article  Google Scholar 

  66. Zhang, K.; Zhai, J. Y.; Wang, Z. L. L. A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezophototronic effect. 2D Mater. 2018, 5, 035038.

    Article  Google Scholar 

  67. Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

    Article  CAS  Google Scholar 

  68. Selamneni, V.; Ganeshan, S. K.; Sahatiya, P. All MoS2 based 2D/0D localized unipolar heterojunctions as flexible broadband (UV-Vis-NIR) photodetectors. J. Mater. Chem. C 2020, 8, 11593–11602.

    Article  CAS  Google Scholar 

  69. Zhang, L. W.; Shen, S. L.; Li, M.; Li, L. Y.; Zhang, J. B.; Fan, L. W.; Cheng, F.; Li, C.; Zhu, M.; Kang, Z. et al. Strategies for air-stable and tunable monolayer MoS2 — based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv. Opt. Mater. 2019, 7, 1801744.

    Article  Google Scholar 

  70. Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

    Article  CAS  Google Scholar 

  71. Seo, J. W. T.; Zhu, J.; Sangwan, V. K.; Secor, E. B.; Wallace, S. G.; Hersam, M. C. Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675–5681.

    Article  CAS  Google Scholar 

  72. Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

    Article  CAS  Google Scholar 

  73. Kung, S. C.; van der Veer, W. E.; Yang, F.; Donavan, K. C.; Penner, R. M. 20 µs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. Nano Lett. 2010, 10, 1481–1485.

    Article  CAS  Google Scholar 

  74. Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.

    Article  CAS  Google Scholar 

  75. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  76. Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the support of the National Natural Science Foundation of China (Nos. 11674290, U1704138, 61804136, U1804155, and 11974317), Henan Science Fund for Distinguished Young Scholars (No. 212300410020), Key Project of Henan Higher Education (No. 21A140001), the Zhengzhou University Physics Discipline Improvement Program, and China Postdoctoral Science Foundation (Nos. 2018M630829 and 2019T120630).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Yang, Lin Dong or Chong-Xin Shan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, X., Lou, Q. et al. Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res. 15, 4395–4402 (2022). https://doi.org/10.1007/s12274-021-3989-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3989-4

Keywords

Navigation