Skip to main content
Log in

High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

PbS-based thermoelectric materials have attracted extensive attention in recent years for the advantages of earth abundancy and low cost, which is considered to be a substitute for traditional PbTe material. However, their high thermal conductivity restricts its development. Hence, in order to improve their thermoelectric performance from reducing the thermal conductivity, a kind of dendritic PbS with controlled crystal grain and morphology are obtained by solution synthesis. By adjusting the amount of surfactant (CTAB), the specific formation process of dendrites is regulated. After sintering, the dendritic PbS nanoparticles are easy to form porous structure due to the overlapping and staggered arrangement of dendritic branches. For comparison, we also prepare a kind of regular octahedral PbS and a dense packing arrangement is formed because of the integrity of the octahedral structure. DFT-based Boltzmann transport equation is used to prove the crucial role of porous structure in scattering phonon. Finally, a maximum zT = 1.0 at 773 K in n-type PbS is obtained, which still keep a high-speed growth and is expected to get higher zT value in a higher temperature region. Our work may shed light to other thermoelectric materials from the formation of porous structure to reduce the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, D. L.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24.

    Article  CAS  Google Scholar 

  2. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515.

    Article  CAS  Google Scholar 

  3. He, W.; Zhang, G.; Zhang, X. X.; Ji, J.; Li, G. Q.; Zhao, X. D. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25.

    Article  Google Scholar 

  4. Fitriani; Ovik, R.; Long, B. D.; Barma, M. C.; Riaz, M.; Sabri, M. F. M.; Said, S. M.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659.

    Article  Google Scholar 

  5. Zhang, M. L.; Wang, Y. G.; Chen, W. X.; Dong, J. C.; Zheng, L. R.; Luo, J.; Wan, J. W.; Tian, S. B.; Cheong, W. C.; Wang, D. S. et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. J. Am. Chem. Soc. 2017, 139, 10976–10979.

    Article  CAS  Google Scholar 

  6. Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.

    Article  CAS  Google Scholar 

  7. Xu, B.; Feng, T. L.; Li, Z.; Zheng, W.; Wu, Y. Large-scale, solution-synthesized nanostructured composites for thermoelectric applications. Adv. Mater. 2018, 30, 1801904.

    Article  Google Scholar 

  8. Xu, B.; Feng, T. L.; Agne, M. T.; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem., Int. Ed. 2017, 56, 3546–3551.

    Article  CAS  Google Scholar 

  9. Parker, D.; Singh, D. J. High temperature thermoelectric properties of rock-salt structure PbS. Solid State Commun. 2014, 182, 34–37.

    Article  CAS  Google Scholar 

  10. Zhao, L. D.; Lo, S. H.; He, J. Q.; Li, H.; Biswas, K.; Androulakis, J.; Wu, C. I.; Hogan, T. P.; Chung, D. Y.; Dravid, V. P. et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 2011, 133, 20476–20487.

    Article  CAS  Google Scholar 

  11. Zhao, L. D.; He, J. Q.; Wu, C. I.; Hogan, T. P.; Zhou, X. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Thermoelectrics with earth abundant elements: High performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 2012, 134, 7902–7912.

    Article  CAS  Google Scholar 

  12. Zhao, L. D.; He, J. Q.; Hao, S. Q.; Wu, C. I.; Hogan, T. P.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J. Am. Chem. Soc. 2012, 134, 16327–16336.

    Article  CAS  Google Scholar 

  13. Yang, J.; Zhang, X. Z.; Liu, G. W.; Zhao, L. J.; Liu, J. L.; Shi, Z. Q.; Ding, J. N.; Qiao, G. J. Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 2020, 74, 104826.

    Article  CAS  Google Scholar 

  14. Wang, H.; Wang, J. L.; Cao, X. L.; Snyder, G. J. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J. Mater. Chem. A 2014, 2, 3169–3174.

    Article  CAS  Google Scholar 

  15. Wang, J. L.; Wang, H.; Snyder, G. J.; Zhang, X.; Ni, Z. H.; Chen, Y. F. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. J. Phys. D Appl. Phys. 2013, 46, 405301.

    Article  Google Scholar 

  16. Johnsen, S.; He, J. Q.; Androulakis, J.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 2011, 133, 3460–3470.

    Article  CAS  Google Scholar 

  17. Xiao, Y.; Wang, D. Y.; Zhang, Y.; Chen, C. R.; Zhang, S. X.; Wang, K. D.; Wang, G. T.; Pennycook, S. J.; Snyder, G. J.; Wu, H. J. et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 2020, 142, 4051–4060.

    Article  CAS  Google Scholar 

  18. Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938–996.

    Article  CAS  Google Scholar 

  19. Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  CAS  Google Scholar 

  20. Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

    Article  CAS  Google Scholar 

  21. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  CAS  Google Scholar 

  22. Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.

    Article  CAS  Google Scholar 

  23. Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747–1750.

    Article  CAS  Google Scholar 

  24. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

    Article  Google Scholar 

  25. Pan, L.; Mitra, S.; Zhao, L. D.; Shen, Y. W.; Wang, Y. F.; Felser, C.; Berardan, D. The role of ionized impurity scattering on the thermoelectric performances of rock salt AgPbmSnSe2+m. Adv. Funct. Mater. 2016, 26, 5149–5157.

    Article  CAS  Google Scholar 

  26. Shuai, J.; Mao, J.; Song, S. W.; Zhu, Q.; Sun, J. F.; Wang, Y. M.; He, R.; Zhou, J. W.; Chen, G.; Singh, D. J. et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ. Sci. 2017, 10, 799–807.

    Article  CAS  Google Scholar 

  27. Shi, X. L.; Wu, A. Y.; Feng, T. L.; Zheng, K.; Liu, W. D.; Sun, Q.; Hong, M.; Pantelides, S. T.; Chen, Z. G.; Zou, J. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 2019, 9, 1803242.

    Article  Google Scholar 

  28. Nassary, M. M. The electrical conduction mechanisms and thermoelectric power of SnSe single crystals. Turkish J. Phys. 2009, 33, 201–208.

    CAS  Google Scholar 

  29. Li, Y. W.; Li, F.; Dong, J. F.; Ge, Z. H.; Kang, F. Y.; He, J. Q.; Du, H. D.; Li, B.; Li, J. F. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J. Mater. Chem. C 2016, 4, 2047–2055.

    Article  CAS  Google Scholar 

  30. Fu, C. G.; Bai, S. Q.; Liu, Y. T.; Tang, Y. S.; Chen, L. D.; Zhao, X. B.; Zhu, T. J. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144.

    Article  Google Scholar 

  31. Li, J.; Zhang, X. Y.; Lin, S. Q.; Chen, Z. W.; Pei, Y. Z. Realizing the high thermoelectric performance of GeTe by Sb-doping and Sealloying. Chem. Mater. 2017, 29, 605–611.

    Article  CAS  Google Scholar 

  32. Li, Y. H.; Wu, Z. H.; Lin, J. H.; Wang, Y. Y.; Mao, J. H.; Xie, H. Q.; Li, Z. Enhanced thermoelectric performance of hot-press Bi-doped n-type polycrystalline PbS. Mater. Sci. Semicond. Process. 2021, 121, 105393.

    Article  CAS  Google Scholar 

  33. Du, X. L.; Wang, Y. L.; Shi, R. N.; Mao, Z. Y.; Yuan, Z. H. Effects of anion and cation doping on the thermoelectric properties of n-type PbS. J. Eur. Ceram. Soc. 2018, 38, 3512–3517.

    Article  CAS  Google Scholar 

  34. Guo, F. K.; Cui, B.; Li, C.; Wang, Y. M.; Cao, J.; Zhang, X. H.; Ren, Z. F.; Cai, W.; Sui, J. H. Ultrahigh thermoelectric performance in environmentally friendly SnTe achieved through stress-induced lotus-seedpod-like grain boundaries. Adv. Funct. Mater. 2021, 31, 2101554.

    Article  CAS  Google Scholar 

  35. Aketo, D.; Shiga, T.; Shiomi, J. Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths. Appl. Phys. Lett. 2014, 105, 131901.

    Article  Google Scholar 

  36. Wu, H. J.; Carrete, J.; Zhang, Z. Y.; Qu, Y. Q.; Shen, X. T.; Wang, Z.; Zhao, L. D.; He, J. Q. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 2014, 6, e108.

    Article  CAS  Google Scholar 

  37. Yang, X. L.; Carrete, J.; Wang, Z. Optimizing phonon scattering by nanoprecipitates in lead chalcogenides. Appl. Phys. Lett. 2016, 108, 113901.

    Article  Google Scholar 

  38. Xu, B.; Feng, T. L.; Li, Z.; Pantelides, S. T.; Wu, Y. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 2018, 18, 4034–4039.

    Article  CAS  Google Scholar 

  39. Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

    Article  CAS  Google Scholar 

  40. Zhang, H.; Hua, C. Y.; Ding, D.; Minnich, A. J. Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures. Sci. Rep. 2015, 5, 9121.

    Article  CAS  Google Scholar 

  41. Jiang, B. B.; Liu, X. X.; Wang, Q.; Cui, J.; Jia, B. H.; Zhu, Y. K.; Feng, J. H.; Qiu, Y.; Gu, M.; Ge, Z. et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy Environ. Sci. 2020, 13, 579–591.

    Article  CAS  Google Scholar 

  42. Fu, L. W.; Yin, M. J.; Wu, D.; Li, W.; Feng, D.; Huang, L.; He, J. Q. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy Environ. Sci. 2017, 10, 2030–2040.

    Article  CAS  Google Scholar 

  43. Wang, H.; Schechtel, E.; Pei, Y. Z.; Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 2013, 3, 488–495.

    Article  CAS  Google Scholar 

  44. Luo, Z. Z.; Hao, S. Q.; Cai, S. T.; Bailey, T. P.; Tan, G. J.; Luo, Y. B.; Spanopoulos, I.; Uher, C.; Wolverton, C.; Dravid, V. P. et al. Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning. J. Am. Chem. Soc. 2019, 141, 6403–6412.

    Article  CAS  Google Scholar 

  45. Du, X. L.; Shi, R. N.; Guo, Y.; Wang, Y. L.; Ma, Y. C.; Yuan, Z. H. Enhanced thermoelectric properties of Pb1-xBixS prepared with hydrothermal synthesis and microwave sintering. Dalton Trans. 2017, 46, 2129–2136.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.X. thanks financial supports from the National Natural Science Foundation of China (No. 21801133), Jiangsu Specially Appointed Professorship, Innovation and Entrepreneurship Talents in Jiangsu Province and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University. J. T. and T. F. acknowledge the support from the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Lou or Biao Xu.

Electronic Supplementary Material

12274_2022_4117_MOESM1_ESM.pdf

High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Tiwari, J., Feng, T. et al. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Res. 15, 4739–4746 (2022). https://doi.org/10.1007/s12274-022-4117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4117-9

Keywords

Navigation