Skip to main content

Advertisement

Log in

Enhanced thermoelectric properties from pore design via adjustment and elimination of residual stresses for Yb0.2(CoSb2.875Te0.125)4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The CoSb3-based skutterudite, as a medium-temperature thermoelectric material, shows excellent thermoelectric performance, but intrinsic high thermal conductivity suppresses enhancement of the ZT value. Here, the Yb0.2(CoSb2.875Te0.125)4 sample was synthesized by the melting reaction, high energy ball milling and the spark plasma sintering, which followed by different processes in order to obtain proper porous structures and eliminate undesirable phases. Elimination of residual stress via annealing results in the formation of micro- and nanopores. The Seebeck coefficient of the S4 sample with the micro- and nanopores is greatly enhanced due to the reduction of the carrier concentration induced by the energy filtering effect of the micro- and nanopores. The power factor achieves 3310 µW m−1 K−2 at 773 K for the sample prepared by pickling and spraying gold particles. The annealed S4 sample with the micro- and nanopores presents a greatly reduced thermal conductivity (~ 1.4 W m−1 K−1) due to the existing abundant the irregularly shaped pores and grain boundaries. Eventually, reasonable porous structures improve the thermoelectric merit (ZT) by 56%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Shi, J. Zou, Z. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020)

    Article  Google Scholar 

  2. G. Ma, R. Liu, H. Liu, Y. Gu, Study on LiFe0.2Mn0.8PO4/C cathode materials with different carbon contents. Shandong Univ. Sci. Technol. 39(06), 42–48 (2020)

    Google Scholar 

  3. D. Mandrus, A. Migliori, T.W. Darling, M.F. Hundley, E.J. Peterson, J.D. Thompson, Electronic transport in lightly doped CoSb3. Phys. Rev. B. 52(7), 4926–4931 (1995)

    Article  ADS  Google Scholar 

  4. E. Alleno, L. Chen, C. Chubilleau, B. Lenoir, O. Rouleau, M.F. Trichet, B. Villeroy, Thermal conductivity reduction in CoSb3-CeO2 nanocomposites. Electron. Mater. 39(9), 1966–1970 (2009)

    Article  ADS  Google Scholar 

  5. S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata, M. Ito, Effect of NiSb on the thermoelectric properties of skutterudite CoSb3. J. Appl. Phys. 93(5), 2758–2764 (2003)

    Article  ADS  Google Scholar 

  6. T. Liang, X. Su, Y. Yan, G. Zheng, X. She, Y. You, C. Uher, M.G. Kanatzidis, X. Tang, Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Mater. 9(2), e352–e352 (2017)

    Article  Google Scholar 

  7. R.P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B.C. Sales, G.J. Long, Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90(13), 135505 (2003)

    Article  ADS  Google Scholar 

  8. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, S. Bennington, Localized vibrational modes in metallic solids. Nature 395, 876–878 (1988)

    Article  ADS  Google Scholar 

  9. C. Ma, X. Wang, H. Liu, Q. Su, Q. Zhang, Y. Gu, H. Cui, Enhanced thermoelectric performance of SnSe with trace Au particles via transport channel design. ACS Appl. Energy Mater. 2(4), 2604–2610 (2019)

    Article  Google Scholar 

  10. W. Liu, B. Zhang, J. Li, H. Zhang, L. Zhao, Enhanced thermoelectric properties in CoSb3−xTex alloys prepared by mechanical alloying and spark plasma sintering. J. Appl. Phys. 102(10), 103717 (2007)

    Article  ADS  Google Scholar 

  11. X. Su, H. Li, Y. Yan, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, C. Uher, Microstructure and thermoelectric properties of CoSb2.75Ge0.25−xTex prepared by rapid solidification. Acta Mater. 60(8), 3536–3544 (2012)

    Article  ADS  Google Scholar 

  12. T. Liang, X. Su, Y. Yan, G. Zhang, Q. Zhang, H. Chi, X. Tang, C. Uher, Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J. Mater. Chem. A. 2(42), 17914–17918 (2014)

    Article  Google Scholar 

  13. K.H. Park, W.S. Seo, D.K. Shin, I.H. Kim, Thermoelectric properties of Yb-filled CoSb3 skutterudites. J. Korean Phys. Soc. 65(4), 491–495 (2014)

    Article  ADS  Google Scholar 

  14. W. Li, J. Wang, Y. Xie, J.L. Gray, J.J. Heremans, H.B. Kang, B. Poudel, S.T. Huxtable, S. Priya, Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity. Chem. Mater. 31(3), 862–872 (2019)

    Article  Google Scholar 

  15. L. Fu, J. Yang, J. Peng, Q. Jiang, Y. Xiao, Y. Luo, D. Zhang, Z. Zhou, M. Zhang, Y. Cheng, F. Cheng, Enhancement of thermoelectric properties of Yb-filled skutterudites by an Ni-induced “core-shell” structure. J. Mater. Chem. A. 3(3), 1010–1016 (2015)

    Article  Google Scholar 

  16. D.T. Morelli, G.P. Meisner, Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77(8), 3777–3781 (1995)

    Article  ADS  Google Scholar 

  17. J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, C. Uher, Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B 67(16), 165027 (2003)

    Google Scholar 

  18. Y. Lei, W. Gao, R. Zheng, Y. Li, W. Chen, L. Zhang, R. Wan, H. Zhou, Z. Liu, P. Chu, Ultrafast synthesis of Te-Doped CoSb3 with excellent thermoelectric properties. ACS Appl. Energy Mater. 2(6), 4477–4485 (2019)

    Article  Google Scholar 

  19. C. Ma, X. Bai, Q. Ren, H. Liu, Y. Gu, H. Cui, From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe. J. Mater. Sci. Technol. 58, 10–15 (2020)

    Article  Google Scholar 

  20. G.Y. Xu, Thermoelectric properties and mechanism on porous silicon wafer. Key Eng. Mater. 336–338, 900–904 (2007)

    Article  Google Scholar 

  21. H. Yang, P. Wen, Y. Zhu, B. Duan, X. Zhou, P. Zhai, Effects of sintering temperature on the microstructure and thermoelectric properties of mesostructured Co4Sb11.5Te0.5 skutterudites dispersed nano-TiN. J. Mater. Sci. Mater. Electron. 29(21), 18105–18110 (2018)

    Article  Google Scholar 

  22. Z. Zamanipour, X. Shi, A.M. Dehkordi, J.S. Krasinski, D. Vashaee, The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys. Status Solidi A. 209(10), 2049–2058 (2012)

    Article  ADS  Google Scholar 

  23. S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A.K. Srivastava, A. Dher, The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale 7(29), 12474–12483 (2015)

    Article  ADS  Google Scholar 

  24. G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl, In-doped multifilled n-type skutterudites with ZT= 1.8. Acta Mater. 95, 201–211 (2015)

    Article  ADS  Google Scholar 

  25. X.F. Meng, Z.H. Liu, B. Cui, D.D. Qin, H.Y. Geng, W. Cai, L.W. Fu, J.Q. He, Z.F. Ren, J.H. Sui, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv. Energy Mater. 7(13), 1602582 (2017)

    Article  Google Scholar 

  26. R. Liu, L. Gao, L. Li, X. Zha, J. Wang, G. Fu, S. Wang, Enhanced high-temperature thermoelectric performance of CdO ceramics with randomly distributed micropores. J. Am. Ceram. Soc. 100(7), 3239–3245 (2017)

    Article  Google Scholar 

  27. J. Yu, W. Zhao, P. Wei, W. Zhu, H. Zhou, Z. Liu, D. Tang, B. Lei, Q. Zhang, Enhanced thermoelectric performance of (Ba, In) double-filled skutterudites via randomly arranged micropores. Appl. Phys. Lett. 104(14), 142104 (2014)

    Article  ADS  Google Scholar 

  28. A. Kallel, G. Roux, T. Derycke, C.L. Martin, M. Marinova, C. Cayron, Microstructure and thermoelectric properties of bulk and porous n-type silicon-germanium alloy prepared by HUP. AIP Conf. Proc. 1449, 409–412 (2012)

    Article  ADS  Google Scholar 

  29. J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, Effect of porosity on thermal and electrical properties of polycrystalline bulk ZrN prepared by spark plasma sintering. J. Alloys Compd. 432(1–2), 7–10 (2007)

    Article  Google Scholar 

  30. G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148301 (2003)

    Article  ADS  Google Scholar 

  31. G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84(13), 2436–2438 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from National Natural Science Foundation of China (Grant No. 51801114) and Project ZR2020ME012 supported by Natural Science Foundation of Shandong Province

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Quan Liu or Qing-Kun He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, XY., Hu, LH., Liu, HQ. et al. Enhanced thermoelectric properties from pore design via adjustment and elimination of residual stresses for Yb0.2(CoSb2.875Te0.125)4. Appl. Phys. A 127, 932 (2021). https://doi.org/10.1007/s00339-021-05087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05087-3

Keywords

Navigation