Skip to main content
Log in

High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrodes based on composites of silver nanowires (AgNWs) and elastic polymers have been widely studied and applied in various stretchable electronic devices. However, due to the high aspect ratio of nanowires, the patterning of AgNW-based composite electrodes remains a huge challenge, especially for high-resolution complex circuit wiring on large-size elastic substrates. In this paper, we propose a method for preparing large-size stretchable circuit boards with high-resolution electrodes by the combination of screen printing and vacuum filtration of AgNWs/polydimethylsiloxane (PDMS) composite. The as-prepared stretchable electrodes have smooth edges with patterning resolution up to ∼50 µm. The conductivity of the composite electrode can be precisely controlled by varying deposition densities of AgNWs and have reached to 1.07 × 104 S/cm when the deposition density was 2.0 mg/cm2. In addition, the uniformity of conductivity and the resistance-strain characteristics of composite electrodes were systematically evaluated with different AgNWs deposition densities. The composite electrodes have been successfully employed to construct a large-size programmable display system and an 18-channel surface electromyography (EMG) recording, showing great potentials for some strain-insensitive stretchable circuits in wearable and health-related electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.

    Article  Google Scholar 

  2. Jin, H.; Nayeem, O. G.; Lee, S.; Matsuhisa, N.; Inoue, D.; Yokota, T.; Hashizume, D.; Someya, T. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 2019, 13, 7905–7912.

    Article  CAS  Google Scholar 

  3. Wang, Y. F.; Wang, J.; Cao, S. T.; Kong, D. S. A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 2019, 7, 9748–9755.

    Article  CAS  Google Scholar 

  4. Wang, J. C.; Zhang, K. K.; Wang, J.; Zhang, M. H.; Zhou, Y. L.; Cheng, J.; Kong, D. S. Strain-invariant conductance in an elastomeric nanocomposite mesh conductor for stretchable electronics. J. Mater. Chem. C 2020, 8, 9440–9448.

    Article  CAS  Google Scholar 

  5. Ding, C.; Li, Q. S.; Lin, Y.; Wu, X. Z.; Wang, Z. Y.; Yuan, W.; Su, W. M.; Chen, W.; Cui, Z. Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers. J. Mater. Chem. C 2020, 8, 16798–16807.

    Article  CAS  Google Scholar 

  6. Ma, F. X.; Lin, Y.; Yuan, W.; Ding, C.; Su, W. M.; Meng, X. Q.; Cui, Z. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display. ACS Appl. Electron. Mater. 2021, 3, 1747–1757.

    Article  CAS  Google Scholar 

  7. Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

    Article  CAS  Google Scholar 

  8. Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Materials Lett. 2019, 1, 511–518.

    Article  CAS  Google Scholar 

  9. Zhao, C. S.; Zhou, Y. L.; Gu, S. Q.; Cao, S. T.; Wang, J. C.; Zhang, M. H.; Wu, Y. Z.; Kong, D. S. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl. Mater. Interfaces 2020, 12, 47902–47910.

    Article  CAS  Google Scholar 

  10. Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.

    Article  CAS  Google Scholar 

  11. Cao, Z. R.; Yang, Y. N.; Zheng, Y. H.; Wu, W.; Xu, F. F.; Wang, R. R.; Sun, J. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J. Mater. Chem. A 2019, 7, 25314–25323.

    Article  CAS  Google Scholar 

  12. Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mat er. Interfaces 2017, 9, 14911–14919.

    Article  CAS  Google Scholar 

  13. Li, D. D.; Liu, X.; Chen, X.; Lai, W. Y.; Huang, W. A simple strategy towards highly conductive silver-nanowire inks for screen-printed flexible transparent conductive films and wearable energy-storage devices. Adv. Mater. Technol. 2019, 4, 1900196.

    Article  CAS  Google Scholar 

  14. Liu, X.; Li, D. D.; Chen, X.; Lai, W. Y.; Huang, W. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks. ACS Appl. Mater. Interfaces 2018, 10, 32536–32542.

    Article  CAS  Google Scholar 

  15. Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473–480.

    Article  Google Scholar 

  16. Lopes, P. A.; Santos, B. C.; De Almeida, A. T.; Tavakoli, M. Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 2021, 12, 4666.

    Article  CAS  Google Scholar 

  17. Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.

    Article  CAS  Google Scholar 

  18. Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. Y.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.

    Article  CAS  Google Scholar 

  19. Qaiser, N.; Damdam, A. N.; Khan, S. M.; Bunaiyan, S.; Hussain, M. M. Design criteria for horseshoe and spiral-based interconnects for highly stretchable electronic devices. Adv. Funct. Mater. 2021, 31, 2007445.

    Article  CAS  Google Scholar 

  20. Trung, T. Q.; Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 2017, 29, 1603167.

    Article  Google Scholar 

  21. Zhao, J.; Chi, Z. H.; Yang, Z.; Chen, X. J.; Arnold, M. S.; Zhang, Y.; Xu, J. R.; Chi, Z. G.; Aldred, M. P. Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale 2018, 10, 5764–5792.

    Article  CAS  Google Scholar 

  22. Matsuhisa, N.; Chen, X. D.; Bao, Z. A.; Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 2019, 48, 2946–2966.

    Article  CAS  Google Scholar 

  23. Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 2020, 32, 1902743.

    Article  CAS  Google Scholar 

  24. Joo, H.; Jung, D.; Sunwoo, S. H.; Koo, J. H.; Kim, D. H. Material design and fabrication strategies for stretchable metallic nanocomposites. Small 2020, 16, 1906270.

    Article  CAS  Google Scholar 

  25. Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

    Article  Google Scholar 

  26. Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 2016, 28, 1420–1426.

    Article  CAS  Google Scholar 

  27. Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

    Article  CAS  Google Scholar 

  28. Jin, H.; Matsuhisa, N.; Lee, S.; Abbas, M.; Yokota, T.; Someya, T. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 2017, 29, 1605848.

    Article  Google Scholar 

  29. Zhu, H. W.; Gao, H. L.; Zhao, H. Y.; Ge, J.; Hu, B. C.; Huang, J.; Yu, S. H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 13, 2879–2884.

    Article  CAS  Google Scholar 

  30. Zhu, M. G.; Xiao, H. S.; Yan, G. P.; Sun, P. K.; Jiang, J. H.; Cui, Z.; Zhao, J. W.; Zhang, Z. Y.; Peng, L. M. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020, 3, 622–629.

    Article  CAS  Google Scholar 

  31. Su, Y.; Jia, S.; Du, J. H.; Yuan, J. T.; Liu, C.; Ren, W. C.; Cheng, H. M. Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Res. 2015, 8, 3954–3962.

    Article  CAS  Google Scholar 

  32. Forró, C.; Demkó, L.; Weydert, S.; Vörös, J.; Tybrandt, K. Predictive model for the electrical transport within nanowire networks. ACS Nano 2018, 12, 11080–11087.

    Article  Google Scholar 

  33. Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

    Article  CAS  Google Scholar 

  34. Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626–6633.

    Article  CAS  Google Scholar 

  35. Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

    Article  CAS  Google Scholar 

  36. Ho, D. H.; Song, R.; Sun, Q. J.; Park, W. H.; Kim, S. Y.; Pang, C.; Kim, D. H.; Kim, S. Y.; Lee, J.; Cho, J. H. Crack-enhanced microfluidic stretchable E-skin sensor. ACS Appl. Mater. Interfaces 2017, 9, 44678–44686.

    Article  CAS  Google Scholar 

  37. Forró, C.; Ihle, S. J.; Reichmuth, A. M.; Han, H.; Stauffer, F.; Weaver, S.; Bonnin, A.; Stampanoni, M.; Tybrandt, K.; Vörös, J. Visualizing and analyzing 3D metal nanowire networks for stretchable electronics. Adv. Theory Simul. 2020, 3, 2000038.

    Article  Google Scholar 

  38. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    Article  CAS  Google Scholar 

  39. Yang, Y.; Ding, S.; Araki, T.; Jiu, J. T.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401–414.

    Article  CAS  Google Scholar 

  40. Zhu, X. Z.; Xu, J.; Qin, F.; Yan, Z. Y.; Guo, A. Q.; Kan, C. X. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 2020, 12, 14589–14597.

    Article  CAS  Google Scholar 

  41. Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996.

    Article  CAS  Google Scholar 

  42. Yuan, W.; Wu, X. Z.; Gu, W. B.; Lin, J.; Cui, Z. Printed stretchable circuit on soft elastic substrate for wearable application. J. Semicond. 2018, 39, 015002.

    Article  Google Scholar 

  43. Cui, Z.; Han, Y. W.; Huang, Q. J.; Dong, J. Y.; Zhu, Y. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale 2018, 10, 6806–6811.

    Article  CAS  Google Scholar 

  44. Oh, J. Y.; Lee, D.; Hong, S. H. Ice-templated bimodal-porous silver nanowire/PDMS nanocomposites for stretchable conductor. ACS Appl. Mater. Interfaces 2018, 10, 21666–21671.

    Article  CAS  Google Scholar 

  45. Martinez, V.; Stauffer, F.; Adagunodo, M. O.; Forro, C.; Vörös, J.; Larmagnac, A. Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties. ACS Appl. Mater. Interfaces 2015, 7, 13467–13475.

    Article  CAS  Google Scholar 

  46. Yao, S. S.; Yang, J.; Poblete, F. R.; Hu, X. G.; Zhu, Y. Multifunctional electronic textiles using silver nanowire composites. A CS Appl. Mater. Interfaces 2019, 11, 31028–31037.

    Article  CAS  Google Scholar 

  47. Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326–3332.

    Article  CAS  Google Scholar 

  48. Huang, G. W.; Xiao, H. M.; Fu, S. Y. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability. Nanoscale 2014, 6, 8495–8502.

    Article  CAS  Google Scholar 

  49. Tybrandt, K.; Stauffer, F.; Vörös, J. Multilayer patterning of high resolution intrinsically stretchable electronics. Sci. Rep. 2016, 6, 25641.

    Article  CAS  Google Scholar 

  50. Yang, M.; Kim, S. W.; Zhang, S. Y.; Park, D. Y.; Lee, C. W.; Ko, Y. H.; Yang, H. F.; Xiao, Y.; Chen, G.; Li, M. Y. Facile and highly efficient fabrication of robust Ag nanowire-elastomer composite electrodes with tailored electrical properties. J. Mater. Chem. C 2018, 6, 7207–7218.

    Article  CAS  Google Scholar 

  51. Tybrandt, K.; Vörös, J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small 2016, 12, 180–184.

    Article  CAS  Google Scholar 

  52. Fan, Y. J.; Li, X.; Kuang, S. Y.; Zhang, L.; Chen, Y. H.; Liu, L.; Zhang, K.; Ma, S. W.; Liang, F.; Wu, T. et al. Highly robust, transparent, and breathable epidermal electrode. ACS Nano 2018, 12, 9326–9332.

    Article  CAS  Google Scholar 

  53. Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces 2020, 12, 32154–32162.

    Article  CAS  Google Scholar 

  54. Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

    Article  CAS  Google Scholar 

  55. Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.

    Article  CAS  Google Scholar 

  56. Kim, A.; Ahn, J.; Hwang, H.; Lee, E.; Moon, J. A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale 2017, 9, 5773–5778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFE0112000) and the National Natural Science Foundation of China (NSFC) (No. 51603227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yuan or Zheng Cui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, Q., Ding, C. et al. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 15, 4590–4598 (2022). https://doi.org/10.1007/s12274-022-4088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4088-x

Keywords

Navigation