Skip to main content
Log in

In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As state-of-the-art electrochemical energy conversion and storage (EECS) techniques, fuel cells and rechargeable batteries have achieved great success in the past decades. However, modern societies’ ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance, which mainly rely on the rational design of catalysts, electrode materials, and electrode/electrolyte interfaces in EESC, based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions. Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques, such as in situ Raman, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) spectroscopy. These techniques can provide characteristic spectroscopic information of molecules and/or crystals, which are sensitive to structure/phase changes resulted from different electrochemical working conditions, hence allowing for intermediates identification and mechanisms understanding. This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman, FTIR, and XRD spectroscopy. The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction (ORR) in fuel cells, on representative high capacity and/or resource abundance cathodes and anodes, and on the solid electrolyte interface (SEI) in rechargeable batteries are discussed. We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007.

    CAS  Google Scholar 

  2. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69.

    Google Scholar 

  3. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    CAS  Google Scholar 

  4. Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran, R.; Blaabjerg, F.; Siano, P. Recent advances and challenges of fuel cell based power system architectures and control—A review. Renew. Sustain. Energy Rev. 2017, 73, 10–18.

    CAS  Google Scholar 

  5. Akhairi, M. A. F.; Kamarudin, S. K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energy 2016, 41, 4214–4228.

    CAS  Google Scholar 

  6. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  7. Whittingham, M. S. Lithium batteries: 50 years of advances to address the next 20 years of climate issues. Nano Lett. 2020, 20, 8435–8437.

    CAS  Google Scholar 

  8. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Google Scholar 

  9. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    CAS  Google Scholar 

  10. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

    Google Scholar 

  11. Shadike, Z.; Zhao, E. Y.; Zhou, Y. N.; Yu, X. Q.; Yang, Y.; Hu, E. Y.; Bak, S.; Gu, L.; Yang, X. Q. Advanced characterization techniques for sodium-ion battery studies. Adv. Energy Mater. 2018, 8, 1702588.

    Google Scholar 

  12. Liu, D. Q.; Shadike, Z.; Lin, R. Q.; Qian, K.; Li, H.; Li, K. K.; Wang, S. W.; Yu, Q. P.; Liu, M.; Ganapathy, S. et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 2019, 31, 1806620.

    Google Scholar 

  13. Amalraj, S. F.; Aurbach, D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J. Solid State Electrochem. 2011, 15, 877–890.

    CAS  Google Scholar 

  14. Lu, J.; Wu, T. P.; Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2017, 2, 17011.

    CAS  Google Scholar 

  15. Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

    Google Scholar 

  16. Jones, R. R.; Hooper, D. C.; Zhang, L. W.; Wolverson, D.; Valev, V. K. Raman techniques: Fundamentals and frontiers. Nanoscale Res. Lett. 2019, 14, 231.

    Google Scholar 

  17. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    CAS  Google Scholar 

  18. Zhang, X.; Tan, Q. H.; Wu, J. B.; Shi, W.; Tan, P. H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450.

    CAS  Google Scholar 

  19. Deng, Y. F.; Dong, S. Y.; Li, Z. F.; Jiang, H.; Zhang, X. G.; Ji, X. L. Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion. Small Methods 2018, 2, 1700332.

    Google Scholar 

  20. Li, J. T.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. Acc. Chem. Res. 2012, 45, 485–494.

    CAS  Google Scholar 

  21. Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483.

    CAS  Google Scholar 

  22. Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A. I.; Schatz, G. C.; Van Duyne, R. P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613.

    CAS  Google Scholar 

  23. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    CAS  Google Scholar 

  24. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

    CAS  Google Scholar 

  25. Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739.

    CAS  Google Scholar 

  26. Lin, X. M.; Wu, D. Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Monitoring the electrochemical energy storage processes of an organic full rechargeable battery via operando Raman spectroscopy: A mechanistic study. Chem. Mater. 2019, 31, 3239–3247.

    CAS  Google Scholar 

  27. Wen, B. Y.; Chen, Q. Q.; Radjenovic, P. M.; Dong, J. C.; Tian, Z. Q.; Li, J. F. In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 2021, 72, 331–351.

    CAS  Google Scholar 

  28. Xia, M. T.; Liu, T. T.; Peng, N.; Zheng, R. T.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Shui, M.; Shu, J. Lab-scale in situ X-ray diffraction technique for different battery systems: Designs, applications, and perspectives. Small Methods 2019, 3, 1900119.

    Google Scholar 

  29. Lv, H. F.; Li, D. G.; Strmcnik, D.; Paulikas, A. P.; Markovic, N. M.; Stamenkovic, V. R. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 2016, 29, 149–165.

    CAS  Google Scholar 

  30. Chen, Z. W.; Waje, M.; Li, W. Z.; Yan, Y. S. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem., Int. Ed. 2007, 46, 4060–4063.

    CAS  Google Scholar 

  31. Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.

    CAS  Google Scholar 

  32. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd—Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    CAS  Google Scholar 

  33. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. V. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    CAS  Google Scholar 

  34. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

    CAS  Google Scholar 

  35. Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 24, 5593–5597.

    CAS  Google Scholar 

  36. Wu, G. P.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X. Q.; Chen, S. G.; Wei, Z. D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem., Int. Ed. 2016, 55, 1340–1344.

    CAS  Google Scholar 

  37. Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

    CAS  Google Scholar 

  38. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    CAS  Google Scholar 

  39. Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

    CAS  Google Scholar 

  40. Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.

    CAS  Google Scholar 

  41. Ze, H. J.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 2021, 143, 1318–1322.

    CAS  Google Scholar 

  42. Wang, Y. H.; Le, J. B.; Li, W. Q.; Wei, J.; Radjenovic, P. M.; Zhang, H.; Zhou, X. S.; Cheng, J.; Tian, Z. Q.; Li, J. F. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem., Int. Ed. 2019, 58, 16062–16066.

    CAS  Google Scholar 

  43. Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

    CAS  Google Scholar 

  44. Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 2018, 8, 6665–6690.

    CAS  Google Scholar 

  45. Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.

    CAS  Google Scholar 

  46. Jiang, J. H.; Wieckowski, A. Prospective direct formate fuel cell. Electrochem. Commun. 2012, 18, 41–43.

    CAS  Google Scholar 

  47. Liu, H. S.; Zhang, J. J. Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications; Wiley-VCH: Weinheim, 2009.

    Google Scholar 

  48. Barbaro, P.; Bianchini, C. Catalysis for Sustainable Energy Production; Wiley-VCH: Weinheim, 2009.

    Google Scholar 

  49. Wang, Y. H.; Wang, X. T.; Ze, H. J.; Zhang, X. G.; Radjenovic, P. M.; Zhang, Y. J.; Dong, J. C.; Tian, Z. Q.; Li, J. F. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 5708–5711.

    CAS  Google Scholar 

  50. Valdés-López, V. F.; Mason, T.; Shearing, P. R.; Brett, D. J. L. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—A review. Prog. Energy Combust. Sci. 2020, 79, 100842.

    Google Scholar 

  51. Stewart, D. W. G.; Scott, K.; Wain, A. J.; Rosser, T. E.; Brightman, E.; Macphee, D.; Mamlouk, M. The role of tungsten oxide in enhancing the carbon monoxide tolerance of platinum-based hydrogen oxidation catalysts. ACS Appl. Mater. Interfaces 2020, 12, 37079–37091.

    CAS  Google Scholar 

  52. Rettenmaier, C.; Arán-Ais, R. M.; Timoshenko, J.; Rizo, R.; Jeon, H. S.; Kühl, S.; Chee, S. W.; Bergmann, A.; Cuenya, B. R. Enhanced formic acid oxidation over SnO2-decorated Pd nanocubes. ACS Catal. 2020, 10, 14540–14551.

    CAS  Google Scholar 

  53. Wang, C. Y.; Yu, Z. Y.; Li, G.; Song, Q. T.; Li, G.; Luo, C. X.; Yin, S. H.; Lu, B. A.; Xiao, C.; Xu, B. B. et al. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol. ChemElectroChem 2020, 7, 239–245.

    CAS  Google Scholar 

  54. Li, M. G.; Zhao, Z. L.; Zhang, W. Y.; Luo, M. C.; Tao, L.; Sun, Y. J.; Xia, Z. H.; Chao, Y. G.; Yin, K.; Zhang, Q. H. et al. Sub-monolayer YOx/MoOx on ultrathin Pt nanowires boosts alcohol oxidation electrocatalysis. Adv. Mater. 2021, 33, 2103762.

    CAS  Google Scholar 

  55. Sun, S. G.; Clavilier, J.; Bewick, A. The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: An emirs study. J. Electroanal. Chem. Interfacial Electrochem. 1988, 240, 147–159.

    CAS  Google Scholar 

  56. Sun, S. G.; Lin, Y. In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes. Electrochim. Acta 1996, 41, 693–700.

    CAS  Google Scholar 

  57. Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

    CAS  Google Scholar 

  58. Guo, J. C.; Huang, R.; Li, Y.; Yu, Z. Y.; Wan, L. Y.; Huang, L.; Xu, B. B.; Ye, J. Y.; Sun, S. G. Surface structure effects of high-index faceted Pd nanocrystals decorated by Au submonolayer in enhancing the catalytic activity for ethanol oxidation reaction. J. Phys. Chem. C 2019, 123, 23554–23562.

    CAS  Google Scholar 

  59. Guo, J. Z.; Wang, P. F.; Wu, X. L.; Zhang, X. H.; Yan, Q. Y.; Chen, H.; Zhang, J. P.; Guo, Y. G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968.

    Google Scholar 

  60. Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L. In situ methods for Li-ion battery research: A review of recent developments. J. Power Sources 2015, 288, 92–105.

    CAS  Google Scholar 

  61. Bak, S. M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X. Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10, 563–580.

    Google Scholar 

  62. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

    CAS  Google Scholar 

  63. Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238.

    CAS  Google Scholar 

  64. Li, X.; Qiao, Y.; Guo, S. H.; Jiang, K. Z.; Ishida, M.; Zhou, H. S. A new type of Li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry. Adv. Mater. 2019, 31, 1807825.

    Google Scholar 

  65. Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

    Google Scholar 

  66. Zhang, X. Y.; Qiao, Y.; Guo, S. H.; Jiang, K. Z.; Xu, S.; Xu, H.; Wang, P.; He, P.; Zhou, H. S. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries. Adv. Mater. 2019, 31, 1807770.

    Google Scholar 

  67. Qiao, Y.; Guo, S. H.; Zhu, K.; Liu, P.; Li, X.; Jiang, K. Z.; Sun, C. J.; Chen, M. W.; Zhou, H. S. Reversible anionic redox activity in Na3RuO4 cathodes: A prototype Na-rich layered oxide. Energy Environ. Sci. 2018, 11, 299–305.

    CAS  Google Scholar 

  68. Zhong, X. B.; He, C.; Gao, F.; Tian, Z. Q.; Li, J. F. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2-Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries. J. Energy Chem. 2021, 53, 323–328.

    CAS  Google Scholar 

  69. Huang, J. X.; Li, B.; Liu, B.; Liu, B. J.; Zhao, J. B.; Ren, B. Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. J. Power Sources 2016, 310, 85–90.

    CAS  Google Scholar 

  70. Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J. C.; Colin, J. F.; Martin, J. F.; Elkaïm, E.; Baehtz, C.; Alloin, F. Lithium/sulfur batteries upon cycling: Structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 2015, 5, 1500165.

    Google Scholar 

  71. Schneider, A.; Weidmann, C.; Suchomski, C.; Sommer, H.; Janek, J.; Brezesinski, T. Ionic liquid-derived nitrogen-enriched carbon/sulfur composite cathodes with hierarchical microstructure—A step toward durable high-energy and high-performance lithium-sulfur batteries. Chem. Mater. 2015, 27, 1674–1683.

    CAS  Google Scholar 

  72. Demir-Cakan, R.; Morcrette, M.; Gangulibabu; Guéguen, A.; Dedryvère, R.; Tarascon, J. M. Li-S batteries: Simple approaches for superior performance. Energy Environ. Sci. 2013, 6, 176–182.

    CAS  Google Scholar 

  73. Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

    CAS  Google Scholar 

  74. Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.

    CAS  Google Scholar 

  75. Wu, H. L.; Huff, L. A.; Gewirth, A. A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 1709–1719.

    CAS  Google Scholar 

  76. Vinayan, B. P.; Diemant, T.; Lin, X. M.; Cambaz, M. A.; Golla-Schindler, U.; Kaiser, U.; Behm, R. J.; Fichtner, M. Nitrogen rich hierarchically organized porous carbon/sulfur composite cathode electrode for high performance Li/S battery: A mechanistic investigation by operando spectroscopic studies. Adv. Mater. Interfaces 2016, 3, 1600372.

    Google Scholar 

  77. Lu, Y.; Hou, X.; Miao, L.; Li, L.; Shi, R.; Liu, L.; Chen, J. Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7020–7024.

    CAS  Google Scholar 

  78. Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. A. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861–868.

    CAS  Google Scholar 

  79. Sole, C.; Drewett, N. E.; Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223–237.

    CAS  Google Scholar 

  80. Cohn, A. P.; Share, K.; Carter, R.; Oakes, L.; Pint, C. L. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene. Nano Lett. 2016, 16, 543–548.

    CAS  Google Scholar 

  81. Lin, X. M.; Diemant, T.; Mu, X. K.; Gao, P.; Behm, R. J.; Fichtner, M. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries. Carbon 2018, 127, 47–56.

    CAS  Google Scholar 

  82. Qiao, Y.; Jiang, K. Z.; Deng, H.; Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion. Nat. Catal. 2019, 2, 1035–1044.

    CAS  Google Scholar 

  83. Lin, X. M.; Chen, J. H.; Fan, J. J.; Ma, Y.; Radjenovic, P.; Xu, Q. C.; Huang, L.; Passerini, S.; Tian, Z. Q.; Li, J. F. Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy Mater. 2019, 9, 1902312.

    CAS  Google Scholar 

  84. Ma, Y.; Ma, Y. J.; Bresser, D.; Ji, Y. C.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.

    CAS  Google Scholar 

  85. Ma, Y. J.; Ma, Y.; Giuli, G.; Euchner, H.; Groß, A.; Lepore, G. O.; D’Acapito, F.; Geiger, D.; Biskupek, J.; Kaiser, U. et al. Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2000783.

    CAS  Google Scholar 

  86. Zhong, X. B.; Wang, X. X.; Wang, H. Y.; Yang, Z. Z.; Jiang, Y. X.; Li, J. F.; Tian, Z. Q. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Res. 2018, 11, 3814–3823.

    CAS  Google Scholar 

  87. An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.

    CAS  Google Scholar 

  88. Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Almer, J. D.; Abraham, D. P. Operando quantification of (de)lithiation behavior of silicongraphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803380.

    Google Scholar 

  89. Misra, S.; Liu, N.; Nelson, J.; Hong, S. S.; Cui, Y.; Toney, M. F. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 2012, 6, 5465–5473.

    CAS  Google Scholar 

  90. Lim, L. Y.; Fan, S. F.; Hng, H. H.; Toney, M. F. Storage capacity and cycling stability in Ge anodes: Relationship of anode structure and cycling rate. Adv. Energy Mater. 2015, 5, 1500599.

    Google Scholar 

  91. Gao, H.; Niu, J. Z.; Zhang, C.; Peng, Z. Q.; Zhang, Z. H. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577.

    CAS  Google Scholar 

  92. Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

    CAS  Google Scholar 

  93. Cabo-Fernandez, L.; Mueller, F.; Passerini, S.; Hardwick, L. J. In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries—Investigation of SEI growth. Chem. Commun. 2016, 52, 3970–3973.

    CAS  Google Scholar 

  94. Maruyama, S.; Fukutsuka, T.; Miyazaki, K.; Abe, T. In situ Raman spectroscopic analysis of solvent co-intercalation behavior into a solid electrolyte interphase-covered graphite electrode. J. Appl. Electrochem. 2019, 49, 639–646.

    CAS  Google Scholar 

  95. Zhou, Y. D.; Doerrer, C.; Kasemchainan, J.; Bruce, P. G.; Pasta, M.; Hardwick, L. J. Observation of interfacial degradation of Li6PS5Cl against lithium metal and LiCoO2 via in situ electrochemical Raman microscopy. Batteries Supercaps 2020, 3, 647–652.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFB1505800 and 2019YFA0705400), the National Natural Science Foundation of China (NSFC) (Nos. 201925404, 21902137, 22005130, and 22021001), the Fundamental Research Funds for the Central Universities (Nos. 20720210069 and 20720210043), and the Science and Technology Planning Project of Fujian Province (No. 2019Y4001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Mei Lin or Jian-Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Tian, XD., Lin, JS. et al. In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Res. 16, 4855–4866 (2023). https://doi.org/10.1007/s12274-021-4044-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4044-1

Keywords

Navigation