Skip to main content
Log in

Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconductor magic-sized nanoclusters have got tremendous interests owing to their distinct chemical and photophysical properties, however, researches concerning their applications are still quite limited. Herein, we employ magic-sized CdSe nanoclusters as the light absorber for hydrogen photogeneration, which exhibits much better photocatalytic performance as compared to other conventional semiconductor quantum dots, such as CdS, CdSe, CdS/CdSe, and CdSe/CdS under identical conditions. Photoluminescence lifetime and transient absorption studies indicated that the superior activity is mainly ascribed to the longer exciton lifetime and fast electron transfer from nanoclusters to cocatalyst. Moreover, the issue of instability during reaction could be significantly inhibited by anchoring Zn2+ onto the surface of nanoclusters, which gives the average efficacy of hydrogen evolution at 0.61 ± 0.07 mL·h−1·mgcatalyst−1, i.e., 27.3 ± 2.9 mmol·h−1·gcatalyst−1 (420 nm) with maintained 95.2% of original activity over 12 h illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schleussner, C. F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E. M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris agreement temperature goal. Nat. Climate Change 2016, 6, 827–835.

    Article  Google Scholar 

  2. Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 2015, 10, 105007.

    Article  Google Scholar 

  3. Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

    Article  CAS  Google Scholar 

  4. Esswein, A. J.; Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047.

    Article  CAS  Google Scholar 

  5. Turner, J. A. Chemistry. A nickel finish protects silicon photoanodes for water splitting. Science 2013, 342, 811–812.

    Article  CAS  Google Scholar 

  6. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.

    Article  CAS  Google Scholar 

  7. Li, Y. Y.; Wu, Q. N.; Zhang, K.; Hu, B.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Boosting photocatalytic oxygen evolution: Purposely constructing direct Z-scheme photoanode by modulating the interface electric field. Chem. Res. Chin. Univ. 2020, 36, 1059–1067.

    Article  CAS  Google Scholar 

  8. Li, Y. Y.; Wu, Q. N.; Chen, Y. F.; Zhang, R.; Li, C. Y.; Zhang, K.; Li, M. J.; Lin, Y. H.; Wang, D. J.; Zou, X. Z. et al. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 290, 120058.

    Article  CAS  Google Scholar 

  9. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    Article  CAS  Google Scholar 

  10. Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg, R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.

    Article  CAS  Google Scholar 

  11. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  12. Wang, P.; Zhang, J.; He, H.; Xu, X.; Jin, Y. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 2015, 7, 5767–5775.

    Article  CAS  Google Scholar 

  13. Han, Z. J.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem., Int. Ed. 2012, 51, 1667–1670.

    Article  CAS  Google Scholar 

  14. Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.

    Article  CAS  Google Scholar 

  15. Chang, C. M.; Orchard, K. L.; Martindale, B. C. M.; Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem. A 2016, 4, 2856–2862.

    Article  CAS  Google Scholar 

  16. Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.

    Article  CAS  Google Scholar 

  17. Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

    Article  CAS  Google Scholar 

  18. Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

    Article  CAS  Google Scholar 

  19. Wang, P.; Wang, M. M.; Zhang, J.; Li, C. P.; Xu, X. L.; Jin, Y. D. Shell thickness engineering significantly boosts the photocatalytic H2 evolution efficiency of CdS/CdSe core/shell quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 35712–35720.

    Article  CAS  Google Scholar 

  20. Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel-sulfur complex. Nanoscale 2014, 6, 13470–13475.

    Article  CAS  Google Scholar 

  21. Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Colloidal hybrid heterostructures based on II-VI semiconductor nanocrystals for photocatalytic hydrogen generation. J. Photochem. Photobiol. C Photochem. Rev. 2014, 19, 52–61.

    Article  CAS  Google Scholar 

  22. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

    Article  CAS  Google Scholar 

  23. Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.

    Article  CAS  Google Scholar 

  24. Bootharaju, M. S.; Baek, W.; Lee, S.; Chang, H.; Kim, J.; Hyeon, T. Magic-sized stoichiometric II-VI nanoclusters. Small 2021, 17, 2002067.

    Article  CAS  Google Scholar 

  25. Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.

    Article  CAS  Google Scholar 

  26. Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.

    Article  CAS  Google Scholar 

  27. Gao, Y. K.; Yin, P. G. Effect of bond dispersion on Raman spectra shift in II-VI semiconductor nanocrystals. Inorg. Chem. 2019, 58, 4859–4868.

    Article  CAS  Google Scholar 

  28. Dmitruk, I.; Belosludov, R. V.; Dmytruk, A.; Noda, Y.; Barnakov, Y.; Park, Y. S.; Kasuya, A. Experimental and computational studies of the structure of CdSe magic-size clusters. J. Phys. Chem. A 2020, 124, 3398–3406.

    Article  CAS  Google Scholar 

  29. Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; Billinge, S. J.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645–10653.

    Article  CAS  Google Scholar 

  30. Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.

    Article  CAS  Google Scholar 

  31. Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.

    Article  CAS  Google Scholar 

  32. Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.

    Article  Google Scholar 

  33. Zhang, H.; Luan, C. R.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J. R.; Fan, H. S.; Huang, W. et al. Room-temperature formation pathway for CdTeSe alloy magic-size clusters. Angew. Chem., Int. Ed. 2020, 59, 16943–16952.

    Article  CAS  Google Scholar 

  34. Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun. 2020, 11, 4199.

    Article  Google Scholar 

  35. Mule, A. S.; Mazzotti, S.; Rossinelli, A. A.; Aellen, M.; Prins, P. T.; van der Bok, J. C.; Solari, S. F.; Glauser, Y. M.; Kumar, P. V.; Riedinger, A. et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 2021, 143, 2037–2048.

    Article  CAS  Google Scholar 

  36. Ouyang, J. Y.; Zaman, B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

    Article  CAS  Google Scholar 

  37. Kirkwood, N.; Boldt, K. Protic additives determine the pathway of CdSe nanocrystal growth. Nanoscale 2018, 10, 18238–18248.

    Article  CAS  Google Scholar 

  38. Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X. S.; Cossairt, B. M. Single-crystal and electronic structure of a 1. 3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 2016, 138, 1510–1513.

    Article  CAS  Google Scholar 

  39. Nevins, J. S.; Coughlin, K. M.; Watson, D. F. Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: Influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl. Mater. Interfaces 2011, 3, 4242–4253.

    Article  CAS  Google Scholar 

  40. Baek, W.; Bootharaju, M. S.; Walsh, K. M.; Lee, S.; Gamelin, D. R.; Hyeon, T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 2021, 20, 650–657.

    Article  CAS  Google Scholar 

  41. Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C 2010, 114, 18834–18840.

    Article  CAS  Google Scholar 

  42. Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Takeda, M.; Ohuchi, N.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano 2010, 4, 121–128.

    Article  CAS  Google Scholar 

  43. Kurihara, T.; Noda, Y.; Takegoshi, K. Quantitative solid-state NMR study on ligand-surface interaction in cysteine-capped CdSe magic-sized clusters. J. Phys. Chem. Lett. 2017, 8, 2555–2559.

    Article  CAS  Google Scholar 

  44. Tang, J. B.; Hui, J.; Zhang, M.; Fan, H. S.; Rowell, N.; Huang, W.; Jiang, Y. N.; Chen, X. Q.; Yu, K. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Res. 2019, 12, 1437–1444.

    Article  CAS  Google Scholar 

  45. Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.

    Article  Google Scholar 

  46. Kurihara, T.; Noda, Y.; Takegoshi, K. Capping structure of ligand-cysteine on CdSe magic-sized clusters. ACS Omega 2019, 4, 3476–3483.

    Article  CAS  Google Scholar 

  47. Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

    Article  CAS  Google Scholar 

  48. Li, Q. Y.; Zhao, F. J.; Qu, C.; Shang, Q. Y.; Xu, Z. H.; Yu, L.; McBride, J. R.; Lian, T. Q. Two-dimensional morphology enhances light-driven H2 generation efficiency in CdS nanoplatelet-Pt heterostructures. J. Am. Chem. Soc. 2018, 140, 11726–11734.

    Article  CAS  Google Scholar 

  49. Qureshi, M.; Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: Efficiency definitions and setup examples. Chem. Mater. 2016, 29, 158–167.

    Article  Google Scholar 

  50. Kunz, L. Y.; Diroll, B. T.; Wrasman, C. J.; Riscoe, A. R.; Majumdar, A.; Cargnello, M. Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy Environ. Sci. 2019, 12, 1657–1667.

    Article  CAS  Google Scholar 

  51. Cao, S.; Piao, L. Y. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 18312–18320.

    Article  CAS  Google Scholar 

  52. Melchionna, M.; Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal. 2020, 10, 5493–5501.

    Article  CAS  Google Scholar 

  53. Chen, Z.; Fan, T. T.; Yu, X.; Wu, Q. L.; Zhu, Q. H.; Zhang, L. Z.; Li, J. H.; Fang, W. P.; Yi, X. D. Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 15310–15319.

    Article  CAS  Google Scholar 

  54. Ben-Shahar, Y.; Scotognella, F.; Waiskopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462–471.

    Article  CAS  Google Scholar 

  55. Gao, Y. J.; Li, X. B.; Wu, H. L.; Meng, S. L.; Fan, X. B.; Huang, M. Y.; Guo, Q.; Tung, C. H.; Wu, L. Z. Exceptional catalytic nature of quantum dots for photocatalytic hydrogen evolution without external cocatalysts. Adv. Funct. Mater. 2018, 28, 1801769.

    Article  Google Scholar 

  56. Gao, Y. J.; Li, X. B.; Wang, X. Z.; Zhao, N. J.; Zhao, Y. F.; Wang, Y.; Xin, Z. K.; Zhang, J. P.; Zhang, T. R.; Tung, C. H. et al. Site-and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration. Matter 2020, 3, 571–585.

    Article  Google Scholar 

  57. Murali, K. R.; Balasubramanian, M. Characteristics of pulse plated CdxZn1−xSe films. Curr. Appl. Phys. 2010, 10, 734–739.

    Article  Google Scholar 

  58. Kundu, B.; Chakrabarti, S.; Pal, A. J. Redox levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: Insight from scanning tunneling spectroscopy. Chem. Mater. 2014, 26, 5506–5513.

    Article  CAS  Google Scholar 

  59. Desrochers, P. J.; Duong, D. S.; Marshall, A. S.; Lelievre, S. A.; Hong, B.; Brown, J. R.; Tarkka, R. M.; Manion, J. M.; Holman, G.; Merkert, J. W. et al. Nickel-cysteine binding supported by phosphine chelates. Inorg. Chem. 2007, 46, 9221–9233.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675146) and the National Key Research and Development Program of China (No. 2016YFA0201300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or Yongdong Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, Q., Xu, C. et al. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Res. 15, 3106–3113 (2022). https://doi.org/10.1007/s12274-021-3983-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3983-x

Keywords

Navigation