Skip to main content

Advertisement

Log in

Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A semiconductor photocatalyst serves as the primary component in photocatalytic oxidation. Scientists are known to be working on modifying existing catalysts and developing new efficient photocatalysts. In recent years, g-C3N4 has attracted wide attention due to its high stability, non-toxicity, cost-effectiveness, and adjustable band-gap energy. However, g-C3N4 also has shortcomings such as ineffcient visible light absorption, a high recombination rate of photoinduced electrons and holes and low quantum efficiency, which significantly restrict its photocatalytic activity. Here, an innovative ternary composite photocatalyst CdS@Cu/g-C3N4 has been successfully fabricated using a simple method, and the photocatalytic degradation of methylene blue (MB) by the CdS@Cu/g-C3N4 composite photocatalyst was also studied. Systematic studies showed that the photocatalytic degradation rate of CdS@Cu/g-C3N4 on MB reached 85.19% within 20 min, which was 2.58 and 1.88 times higher than that of CdS and g-C3N4, respectively. Free radical capture experiments showed that ·O2 plays a significant role during the photocatalytic process. It is postulated that a type II heterojunction might be formed between CdS and g-C3N4, effectively restricting photoinduced carrier recombination and enhancing visible light absorption. Cu doping changes the optical properties, affects the energy band structure of g-C3N4, increases the efficiency of electron transfer and improves the electron/hole separation rate, which helps to improve the photocatalytic activity. This work provides a valuable strategy to improve the photocatalytic performance of g-C3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Cuilin Li, upon reasonable request.

References

  1. A.T. Kuvarega, W.M.K. Rui, B.B. Mamba, J. Phys. Chem. C 115(45), 22110–22120 (2011). https://doi.org/10.1021/jp203754j

    Article  CAS  Google Scholar 

  2. Q. Wang, J. Hui, Y. Huang, Y. Ding, Y. Cai, S. Yin, Z. Li, B. Su, Mat. Sci. Semicon. Proc. 17, 87–93 (2014). https://doi.org/10.1016/j.mssp.2013.08.018

    Article  CAS  Google Scholar 

  3. C. Dang, Q.W. Zhang, M.Z. Xu, X.F. Ruan, P.P. Xu, J.F. Yan, J. Li, Inorg. Nano-Metal Chem. 45(5), 783–787 (2017)

    Article  Google Scholar 

  4. L.T. Niu, S.P. Hu, Y.L. Ma, M.M. Wang, B.L. Lv, S.Y. Meng, F.L. Hua, L. Li, B.T. Su, Z.Q. Lei, Z.W. Yang, Nano Brief. Rep. Rev. 15(1), 1–11 (2020). https://doi.org/10.1142/S1793292020500897

    Article  Google Scholar 

  5. J. Wu, P. Liang, Q. Li, Z. Ji, P. He, X. Qi, H. Cheng, K. Xu, C. Lu, L. Zhu, Mater. Lett. 218, 5–9 (2018). https://doi.org/10.1016/j.matlet.2018.01.117

    Article  CAS  Google Scholar 

  6. S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Environ. Sci. 65, 201–222 (2018)

    Article  CAS  Google Scholar 

  7. T. Zhang, X. Wang, Z. Sun, Q. Liang, D. Sun, J. Mater. Sci. Mater. Electron. 31(18), 15742–15750 (2020). https://doi.org/10.1007/s10854-020-04136-6

    Article  CAS  Google Scholar 

  8. S. Mancipe, J.J. Martinez, C. Pinzon, H. Rojas, D. Solis, R. Gomez, Catal. Today. 372(1), 191–197 (2021)

    Article  CAS  Google Scholar 

  9. N. Al-Areqi, E.S. Al-Aghbari, W.M. Al-Asbahy, D.M. Murshed, F. Saleh, Int. J. Sci. Eng. Res. 12(4), 121–128 (2021)

    Google Scholar 

  10. Y.H. Li, M.L. Gu, T. Shi, W. Cui, X.M. Zhang, F. Dong, J.S. Cheng, J.J. Fan, K. Lv, Appl. Catal. B: Environ. 262, 5687–5696 (2020)

    Google Scholar 

  11. S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  12. J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  13. S. Zhang, P.C. Gu, R. Ma, C.T. Luo, T. Wena, G.X. Zhao, W.C. Cheng, X.K. Wang, Catal. Today. 335, 65–77 (2019). https://doi.org/10.1016/j.cattod.2018.09.013

    Article  CAS  Google Scholar 

  14. X. Liu, R. Ma, L. Zhuang, B.W. Hu, J.R. Chen, X.Y. Liu, X.K. Wang, Crit. Rev. Environ. Sci. Technol. 51(7), 751–759 (2021). https://doi.org/10.1080/10643389

    Article  CAS  Google Scholar 

  15. Y. Ding, S. Maitra, C.H. Wang, R.T. Zheng, M.Y. Zhang, T. Barakat, S. Roy, J. Liu, Y. Li, T. Hasan, B.L. Su, J. Energy Chem. 70, 236–247 (2022)

    Article  CAS  Google Scholar 

  16. W.D. Oh, V.W.C. Chang, Z.T. Hu, R. Goei, T.T. Lim, Chem. Eng. J. 323, 260–269 (2017)

    Article  CAS  Google Scholar 

  17. L.F. Gao, T.W.J.Y. Xu, X.P. Zhai, M. Zhao, G.W. Hu, P. Chen, Q. Wang, H.L. Zhang, ACS Appl. Mater. Interfaces. 8(1), 617–624 (2016)

    Article  CAS  Google Scholar 

  18. L. Muniandy, F. Adam, A.R. Mohamed, A. Iqbal, N.R.A. Rahman, Appl. Surf. Sci. 398, 43–55 (2017)

    Article  CAS  Google Scholar 

  19. G.D. Shi, L.D. Yang, Z.W. Liu, X. Chen, J.Q. Zhou, Y. Yu, Appl. Surf. Sci. 427, 1165–1173 (2018)

    Article  CAS  Google Scholar 

  20. Y.J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.T. Yu, Z.G. Zou, Appl. Catal. B: Environ. 246(5), 120–128 (2019). https://doi.org/10.1016/j.apcatb.2019.01.043

    Article  CAS  Google Scholar 

  21. B. Lin, H. Li, H. An, W.B. Hao, J.J. Wei, Appl. Catal. B: Environ. 220, 542–552 (2018)

    Article  CAS  Google Scholar 

  22. W. Ma, D. Zheng, Y. Xian, X. Hu, Q. Zhang, S. Wang, C. Cheng, J. Liu, P. Wang, Chem. Cat Chem. 13(20), 4403–4410 (2021). https://doi.org/10.1002/cctc.202100833

    Article  CAS  Google Scholar 

  23. K.N. Van, H.T. Huu, V.N.N. Thi, T.L.T. Le, Q.D. Hoang, Q.V. Dinh, V. Vo, D.L. .Tran, Y. Vasseghian, Environ. Res. 206, 112556 (2022).

    Article  CAS  Google Scholar 

  24. J.A. Nasir, N. Islam, Z.U. Rehman, I.S. Butler, A. Munir, Y. Nishina, Mater. Chem. Phys. 259, 124140–124147 (2021). https://doi.org/10.1016/j.matchemphys.2020.124140

    Article  CAS  Google Scholar 

  25. J.K. Gao, J.P. Wang, X.F. Qian, Y.Y. Dong, H. Xu, R.J. Song, C.F. Yan, H.C. Zhu, Q.W. Zhong, G.D. Qian, J.M. Yao, J. Solid State Chem. 228, 60–64 (2015). https://doi.org/10.1016/j.jssc.2015.04.027

    Article  CAS  Google Scholar 

  26. S. Le, T. Jiang, Q. Zhao, X. Liu, Y. Li, B. Fang, M. Gong, RSC Adv. 6(45), 38811–38819 (2016). https://doi.org/10.1039/C6RA03982K

    Article  CAS  Google Scholar 

  27. X. Song, H. Tao, L. Chen, Y. Sun, Mater. Lett. 116, 265–267 (2014).

    Article  CAS  Google Scholar 

  28. D.Y. Fu, G.Y. Han, F.F. Liu, Y.M. Xiao, H.F. Wang, R.Q. Liu, C.X. Liu, Mater. Sci. Semicond. Process. 27, 966–974 (2014). https://doi.org/10.1016/j.mssp.2014.08.004

    Article  CAS  Google Scholar 

  29. F. Jiang, T.T. Yan, H. Chen, A.W. Sun, C.M. Xu, X. Wang, Appl. Surf. Sci. 295, 164–172 (2014). https://doi.org/10.1016/j.apsusc.2014.01.022

    Article  CAS  Google Scholar 

  30. S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358, 15–27 (2015). https://doi.org/10.1016/j.apsusc.2015.08.173

    Article  CAS  Google Scholar 

  31. T.T. Pham, E.W. Shin, Appl. Surf. Sci. 447, 757–766 (2018)

    Article  CAS  Google Scholar 

  32. W. Wang, M. Zhang, B. Zhao, L. Liu, R. Han, N. Wang, Pigm. Resin Technol. 51(1), 91–100 (2022). https://doi.org/10.1108/PRT-09-2020-0097

    Article  Google Scholar 

  33. Z. Zhang, X. Xue, X. Chen, Dalton Trans. 51, 8015–8027 (2022). https://doi.org/10.1039/D2DT00737A

    Article  CAS  Google Scholar 

  34. M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Phy. E Low Dimens. Syst. Nanostruct. 41(8), 1457–1465 (2009). https://doi.org/10.1016/j.physe.2009.04.020

    Article  CAS  Google Scholar 

  35. H. Liu, H. Li, J. Lu, S. Zeng, M. Wang, N. Luo, S. Xu, F. Wang, ACS Catal. 8(6), 4761–4771 (2018)

    Article  CAS  Google Scholar 

  36. J.N. Zhu, X.Q. Zhu, F.F. Cheng, P. Li, W.W. Xiong, Appl. Catal. B: Environ. 256, 117830 (2019). https://doi.org/10.1016/j.apcatb.2019.117830

    Article  CAS  Google Scholar 

  37. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B: Environ. 163, 135–142 (2015). https://doi.org/10.1016/j.apcatb.2014.07.053

    Article  CAS  Google Scholar 

  38. L. Ge, F. Zuo, J.K. Liu, Q. Ma, C. Wang, J. Phys. Chem. C: Nanomater. Interfaces 116(25), 13708–13714 (2012). https://doi.org/10.1021/jp3041692

    Article  CAS  Google Scholar 

  39. T. Zhao, Z. Xing, Z. Xiu, Z. Li, L. Shen, Y. Cao, M. Hu, S. Yang, W. Zhou, Mater. Res. Bulletin. 103, 114–121 (2018). https://doi.org/10.1016/j.materresbull.2018.03.029

    Article  CAS  Google Scholar 

  40. Y. Ding, S. Maitra, C.H. Wang, R.T. Zheng, T. Barakat, S. Roy, L.H. Chen, B.L. Su, Sci. China Mater. 66(1), 179–192 (2023). https://doi.org/10.1007/s40843-022-2148-4

    Article  CAS  Google Scholar 

  41. M. Ivanda, K. Furic, S. Music, M. Ristic, M. Gotic, D. Ristic, A.M. Tonejc, I. Djerdj, M. Mattarelli, M. Montagna, F. Rossi, M. Ferrari, A. Chiasera, Y. Jestin, G.C. Righini, W. Kiefer, R.R. Goncalves, J. Raman Spectrosc. 38(6), 647–659 (2007). https://doi.org/10.1002/jrs.1723

    Article  CAS  Google Scholar 

  42. C.Y. Hu, L.E.K.K. Hu, L.Y. Lai, H. Rong, J. Mater. Sci. Mater. Electron. 55(1), 151–162 (2020). https://doi.org/10.1007/s10853-019-03953-3

    Article  CAS  Google Scholar 

  43. H. Liu, Z.Z. Xu, Z. Zhang, D. Ao, Appl. Catal. A: Gen. 518, 150–157 (2016). https://doi.org/10.1016/j.apcata.2015.08.026

    Article  CAS  Google Scholar 

  44. J.H. Liu, T.K. Zhang, Z.C. Wang, G. Dawson, W. Chen, J. Mater. Chem. 21(38), 14398–14401 (2011). https://doi.org/10.1039/c1jm12620b

    Article  CAS  Google Scholar 

  45. Y.Q. Wang, X.X. Xu, W. Lu, Y.Q. Huo, L.J. Bian, Dalton Trans. 47(12), 4219–4227 (2018)

    Article  CAS  Google Scholar 

  46. Z.P. Yan, Z.J. Sun, L. Xiang, H.X. Jia, P.W. Du, Nanoscale. 8(8), 4748–4756 (2016). https://doi.org/10.1039/c6nr00160b

    Article  CAS  Google Scholar 

  47. J.Q. Ma, N.Z.F. Jia, C.S. Shen, W.P. Liu, Y.Z. Wen, J. Hazard. Mater. 378, 120782 (2019). https://doi.org/10.1016/j.jhazmat.2019.120782

    Article  CAS  Google Scholar 

  48. T.T. Xiao, Z. Tang, Y. Yang, L.Q. Tang, Y. Zhou, Z.G. Zou, Appl. Catal. B: Environ. 220, 417–428 (2018). https://doi.org/10.1016/j.apcatb.2017.08.070

    Article  CAS  Google Scholar 

  49. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  Google Scholar 

  50. C. Wang, H. Huang, B. Weng, D. Verhaeghe, M. Keshavarz, H. Jin, B. Liu, H. Xie, Y. Ding, Y. Gao, Appl. Catal. B: Environ. 301, 120760 (2022)

    Article  CAS  Google Scholar 

  51. Y.J. Cui, Chin. J. Catal. 36(3), 372–379 (2015). https://doi.org/10.1016/S1872-2067

    Article  CAS  Google Scholar 

  52. A.H. Yangjeh, A. Akhundi, J. Mol. Catal. A: Chem. 415(1), 122–130 (2016)

    Article  Google Scholar 

  53. Z.Y. Liang, J.X. Wei, X. Wang, Y. Yu, F.X. Xiao, J. Mater. Chem. A 5(30), 15601–15612 (2017). https://doi.org/10.1039/c7ta04333c

    Article  CAS  Google Scholar 

  54. Q. Wang, W. Wang, L.L. Zhong, D.M. Liu, X.Z. Cao, F.Y. Cui, Appl. Catal. B: Environ. 220, 290–302 (2018). https://doi.org/10.1016/j.apcatb.2017.08.049

    Article  CAS  Google Scholar 

  55. H. Dong, X. Guo, C. Yang, Z. Ouyang, Appl. Catal. B: Environ. 230, 65–76 (2018)

    Article  CAS  Google Scholar 

  56. K.Y. Jiang, X.C. Dai, Y. Yan, Q.L. Mo, F.X. Xiao, J. Phys. Chem. C 122(23), 12291–12306 (2018). https://doi.org/10.1021/acs.jpcc.8b02895

    Article  CAS  Google Scholar 

  57. Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X.L. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234, 37–49 (2018). https://doi.org/10.1016/j.apcatb.2018.04.026

    Article  CAS  Google Scholar 

  58. C. Song, Y. Feng, W. Shi, C. Liu, Cryst. EngComm. 18, 7796–7804 (2016)

    Article  CAS  Google Scholar 

  59. P. Dhatshanamurthi, M. Shanthi, Int. J. Hydrog Energy. 42(8), 5523–5536 (2017)

    Article  CAS  Google Scholar 

  60. J. Yan, Z.L. Song, X. Wang, Y.G. Xu, W.J. Pu, H. Xu, S.Q. Yuan, H.M. Li, Appl. Surf. Sci. 466, 70–77 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ph.D Fund Project of Lanzhou University of Arts and Sciences (2021SZZ11), Natural Science Foundation of Gansu Province (22JR5RA215), Teaching Quality Improvement Project of Lanzhou University of Arts and Sciences (Teaching Team) (2022-ZL-jxtd-01), Teaching Quality Improvement Project of Lanzhou University of Arts and Sciences (Education and Teaching Reform) (2021-ZL-jxgg-20), The Scientific Research and Innovation Team of Lanzhou University of Arts and Sciences (21KYCXTD03).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CL, QZ and WL. The first draft of the manuscript was written by CL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cuilin Li or Quanlu Yang.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhai, Q., Liu, W. et al. Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue. J Mater Sci: Mater Electron 34, 1659 (2023). https://doi.org/10.1007/s10854-023-11055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11055-9

Navigation