Skip to main content
Log in

PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enhancing the selectivity of noble metal catalysts through electronic modulation is important for academic research and chemical industrial processes. Herein, we report a facile sacrificial template strategy for the synthesis of PdZn intermetallic compound (3–4 nm) highly distributed in ZnO/nitrogen-decorated carbon hollow spheres (PdZn-ZnO/NCHS) to optimize the selectivity of Pd catalysts, which involves carbonization of a core-shell structured polystyrene (PS)@ZIF-8 precursor in an inert atmosphere, impregnation Pd precursor, and subsequent H2 reduction treatment. Due to the unique structural and compositional features, the developed PdZn-ZnO/NCHS delivers an excellent catalytic performance for the semihydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) with high activity (> 99%), high selectivity (96%), and good recyclability, outperforming the analog Pd on ZnO (Pd/ZnO) as well as the supported Pd nanoparticles (Pd/C and Pd/NC). Density functional theory (DFT) calculations reveal that the presence of Znδ+ species in PdZn-ZnO/NCHS alters the adsorption modes of reactant and product, leading to a decrease of the adsorption strength and an enhancement of the energy barrier for overhydrogenation, which results in a kinetic favor for the selective transformation of MBY to MBE. In addition, PdZn-ZnO/NCHS was also very effective for the partial hydrogenation of dehydrolinalool to hydrolinalool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, P.; Wang, Z. Y.; Zhang, Y.; Wang, J.; Li, W. Q.; Li, L. N.; Zhang, P. P.; Wei, C. D.; Miao, S. D. Preparation of semihydrogenation catalysts by embedding Pd in layered double hydroxides nanocages via sacrificial template of ZIF-67. Appl. Catal. A Gen. 2020, 597, 117540.

    Article  CAS  Google Scholar 

  2. Wang, Z.; Mao, S. J.; Li, H. R.; Wang, Y. How to synthesize vitamin E. Acta Phys. Chim. Sin. 2018, 34, 598–617.

    CAS  Google Scholar 

  3. Ki Kim, S.; Kim, C.; Lee, J. H.; Kim, J.; Lee, H.; Moon, S. H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154.

    Article  Google Scholar 

  4. Lindlar, H. Ein neuer katalysator für selektive hydrierungen. Helv. Chim. Acta 1952, 35, 446–450.

    Article  CAS  Google Scholar 

  5. Lindlar, H.; Dubuis, R. Palladium catalyst for partial reduction of acetylenes. Org. Synth. 1966, 46, 89–92.

    Article  CAS  Google Scholar 

  6. Dhamodharan, R. Selective hydrogenation of phenylacetylene using block copolymer additional poisoning agent. Chem. Lett. 1996, 25, 235–236.

    Article  Google Scholar 

  7. Mallat, T.; Baiker, A. Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl. Catal. A Gen. 2000, 200, 3–22.

    Article  CAS  Google Scholar 

  8. Bridier, B.; Hevia, M. A. G.; López, N.; Pérez-Ramírez, J. Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. J. Catal. 2011, 278, 167–172.

    Article  CAS  Google Scholar 

  9. Garcia, P. E.; Lynch, A. S.; Monaghan, A.; Jackson, S. D. Using modifiers to specify stereochemistry and enhance selectivity and activity in palladium-catalysed, liquid phase hydrogenation of alkynes. Catal. Today 2011, 164, 548–551.

    Article  CAS  Google Scholar 

  10. Sulman, E.; Bodrova, Y.; Matveeva, V.; Semagina, N.; Cerveny, L.; Kurtc, V.; Bronstein, L.; Platonova, O.; Valetsky, P. Hydrogenation of dehydrolinalool with novel catalyst derived from Pd colloids stabilized in micelle cores of polystyrene-poly-4-vinylpyridine block copolymers. Appl. Catal. A Gen. 1999, 176, 75–81.

    Article  CAS  Google Scholar 

  11. Semagina, N. V.; Bykov, A. V.; Sulman, E. M.; Matveeva, V. G.; Sidorov, S. N.; Dubrovina, L. V.; Valetsky, P. M.; Kiselyova, O. I.; Khokhlov, A. R.; Stein, B. et al. Selective dehydrolinalool hydrogenation with poly (ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles. J. Mol. Catal. A Chem. 2004, 208, 273–284.

    Article  CAS  Google Scholar 

  12. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

    Article  CAS  Google Scholar 

  13. Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

    Article  CAS  Google Scholar 

  14. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 7, 16009.

    Article  Google Scholar 

  15. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  16. Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

    Article  CAS  Google Scholar 

  17. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

    Article  CAS  Google Scholar 

  18. Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.

    Article  CAS  Google Scholar 

  19. Li, Z.; Cui, Y. R.; Wu, Z. W.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E. Z.; Miller, J. T.; Ribeiro, F. H. et al. Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 2018, 7, 349–355.

    Article  Google Scholar 

  20. Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402–6410.

    Article  CAS  Google Scholar 

  21. Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

    Article  Google Scholar 

  22. Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming. J. Phys. Chem. C 2012, 116, 14930–14935.

    Article  CAS  Google Scholar 

  23. Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014, 4, 1441–1450.

    Article  CAS  Google Scholar 

  24. Hu, M. Z.; Zhao, S.; Liu, S. J.; Chen, C.; Chen, W. X.; Zhu, W.; Liang, C.; Cheong, W. C.; Wang, Y.; Yu, Y. et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 2018, 30, 1801878.

    Article  Google Scholar 

  25. Mao, S. J.; Zhao, B. W.; Wang, Z.; Gong, Y. T.; Lü, G. F.; Ma, X.; Yu, L. L.; Wang, Y. Tuning the catalytic performance for the semihydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 27, 4143–4151.

    Article  Google Scholar 

  26. Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen, C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.

    Article  Google Scholar 

  27. Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y. PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13–20.

    Article  CAS  Google Scholar 

  28. Zhang, R. G.; Zhang, J.; Zhao, B.; He, L. L.; Wang, A. J.; Wang, B. J. Insight into the effects of Cu component and the promoter on the selectivity and activity for efficient removal of acetylene from ethylene on Cu-based catalyst. J. Phys. Chem. C 2017, 121, 27936–27949.

    Article  CAS  Google Scholar 

  29. Li, R. R.; Yue, Y. X.; Chen, Z.; Chen, X. L.; Wang, S. S.; Jiang, Z.; Wang, B. L.; Xu, Q. Q.; Han, D. M.; Zhao, J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Appl. Catal. B Environ. 2020, 279, 119348.

    Article  CAS  Google Scholar 

  30. Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.

    Article  CAS  Google Scholar 

  31. Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.

    Article  CAS  Google Scholar 

  32. Okhlopkova, L. B.; Cherepanova, S. V.; Prosvirin, I. P.; Kerzhentsev, M. A.; Ismagilov, Z. R. Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd-Zn nanoalloys: Effect of composition and heterogenization. Appl. Catal. A Gen. 2018, 549, 245–253.

    Article  CAS  Google Scholar 

  33. Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

    Article  CAS  Google Scholar 

  34. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  CAS  Google Scholar 

  35. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    Article  CAS  Google Scholar 

  36. Zhang, F.; Wei, Y. Y.; Wu, X. T.; Jiang, H. Y.; Wang, W.; Li, H. X. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966.

    Article  CAS  Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  38. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  40. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Rhys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  41. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  43. Nozawa, K.; Endo, N.; Kameoka, S.; Tsai, A. P.; Ishii, Y. Catalytic properties dominated by electronic structures in PdZn, NiZn, and PtZn intermetallic compounds. J. Phys. Soc. Jpn. 2011, 80, 064801.

    Article  Google Scholar 

  44. Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semihydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

    Article  CAS  Google Scholar 

  45. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  46. Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.

    Article  Google Scholar 

  47. Tian, Z.; Chen, D. L.; He, T.; Yang, P. Y.; Wang, F. F.; Zhong, Y. J.; Zhu, W. D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 2019, 123, 22114–22122.

    Article  CAS  Google Scholar 

  48. Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

    Article  CAS  Google Scholar 

  49. Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. Lobster: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.

    Article  CAS  Google Scholar 

  50. Cai, Q. L.; Xu, Q. H.; Zhang, Y. Y.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon. J. Phys. Chem. C 2021, 125, 5088–5098.

    Article  CAS  Google Scholar 

  51. Wu, C.; Zhu, C. Y.; Liu, K. K.; Yang, S. W.; Sun, Y.; Zhu, K.; Cao, Y. L.; Zhang, S.; Zhuo, S. F.; Zhang, M. et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B Environ. 2022, 300, 120288.

    Article  CAS  Google Scholar 

  52. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    Article  CAS  Google Scholar 

  53. Zhao, X. M.; Jin, Y.; Zhang, F. M.; Zhong, Y. J.; Zhu, W. D. Catalytic hydrogenation of 2, 3, 5-trimethylbenzoquinone over Pd nanoparticles confined in the cages of MIL-101(Cr). Chem. Eng. J. 2014, 239, 33–41.

    Article  CAS  Google Scholar 

  54. Föttinger, K. PdZn based catalysts: Connecting electronic and geometric structure with catalytic performance. Catalysis 2013, 25, 77–117.

    Google Scholar 

  55. Mashkovsky, I. S.; Markov, P. V.; Bragina, G. O.; Baeva, G. N.; Rassolov, A. V.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.; Stakheev, A. Y. PdZn/α-Al2O3 catalyst for liquid-phase alkyne hydrogenation: Effect of the solid-state alloy transformation into intermetallics. Mendeleev Commun. 2018, 28, 152–154.

    Article  CAS  Google Scholar 

  56. Glyzdova, D. V.; Khramov, E. V.; Smirnova, N. S.; Prosvirin, I. P.; Bukhtiyarov, A. V.; Trenikhin, M. V.; Gulyaeva, T. I.; Vedyagin, A. A.; Shlyapin, D. A.; Lavrenov, A. V. Study on the active phase formation of Pd-Zn/Sibunit catalysts during the thermal treatment in hydrogen. Appl. Surf. Sci. 2019, 483, 730–741.

    Article  CAS  Google Scholar 

  57. Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladium nanocrystals: Which sites are most active and selective? J. Am. Chem. Soc. 2011, 133, 12787–12794.

    Article  CAS  Google Scholar 

  58. Chen, Y. Z.; Cai, G. R.; Wang, Y. M.; Xu, Q.; Yu, S. H.; Jiang, H. L. Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade: The role of catalyst wettability. Green Chem. 2016, 18, 1212–1217.

    Article  CAS  Google Scholar 

  59. Vernuccio, S.; Von Rohr, P. R.; Medlock, J. General kinetic modeling of the selective hydrogenation of 2-methyl-3-butyn-2-ol over a commercial palladium-based catalyst. Ind. Eng. Chem. Res. 2015, 54, 11543–11551.

    Article  CAS  Google Scholar 

  60. Prestianni, A.; Crespo-Quesada, M.; Cortese, R.; Ferrante, F.; Kiwi-Minsker, L.; Duca, D. Structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation on Pd: Computational and experimental modeling. J. Phys. Chem. C 2014, 118, 3119–3128.

    Article  CAS  Google Scholar 

  61. Brix, F.; Desbuis, V.; Piccolo, L.; Gaudry, É. Tuning adsorption energies and reaction pathways by alloying: PdZn versus Pd for CO2 hydrogenation to methanol. J. Phys. Chem. Lett. 2020, 11, 7672–7678.

    Article  CAS  Google Scholar 

  62. Hu, J. H.; Guo, W. Y.; Liu, Z. H.; Lu, X. Q.; Zhu, H. Y.; Shi, F.; Yan, J. Q.; Jiang, R. B. Unraveling the mechanism of the Zn-improved catalytic activity of pd-based catalysts for water-gas shift reaction. J. Phys. Chem. C 2016, 120, 20181–20191.

    Article  CAS  Google Scholar 

  63. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (No. 21576243), and the Natural Science Foundation of Zhejiang Province (Nos. LY18B060006, LY17B060001, and LY21B030003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumin Zhang, De-Li Chen or Weidong Zhu.

Electronic supplementary material

12274_2021_3971_MOESM1_ESM.pdf

PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Chen, X., Li, S. et al. PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols. Nano Res. 15, 3090–3098 (2022). https://doi.org/10.1007/s12274-021-3971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3971-1

Keywords

Navigation