Skip to main content

Advertisement

Log in

Surface Functionalization of Ordered Mesoporous Hollow Carbon Spheres with Ru Organometallic Compounds as Supports of Low-Pt Content Nanocatalysts for Alkaline Hydrogen and Oxygen Evolution Reactions

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Herein, we report a methodology that leads to the formation of Ru metallic sites, followed by the development and anchorage of Pt-Ru alloyed nanoparticles on the surface of Ordered Mesoporous Hollow Carbon Spheres (OMHCS). Along with the Ru sites, it is demonstrated that the functionalization promotes the formation of functional groups on the surface of the OMHCS. In a first stage, OMHCS are functionalized with the [(η6-C6H5OCH2CH2OH)RuCl2]2 (Ru-dim) and [(η6-C6H4CH(CH3)2CH3)RuCl2]2 (Ru-cym) organometallic compounds. Afterwards, Pt nanoparticles are dispersed by the microwave-assisted polyol method over the functionalized supports obtaining the low-metal content 5 wt. % Pt/OMHCSRu-dim and Pt/OMHCSRu-cym nanocatalysts. The degree of Ru alloyed is found to be around 35%. The low-Pt content Pt/OMHCSRu-cym and Pt/OMHCSRu-dim exhibit a higher catalytic activity for the Oxygen (OER) and the Hydrogen (HER) Evolution Reactions than the Pt/C benchmark and the Pt/OMHCS nanocatalysts. The overpotential for the OER at 10 mA cm-2OER) is 300 mV and 210 mV smaller at Pt/OMHCSRu-cym and Pt/OMHCSRu-dim compared to Pt/C, respectively. The corresponding values of the HER at -10 mA cm-2HER) are 14 and 18 mV smaller, respectively. The high catalytic activity of Pt/OMHCSRu-cym and Pt/OMHCSRu-dim has been attributed in part to the presence of Ru0 and RuO2 species from organometallic functionalization, and the modification of the d-valence band of Pt. Their high performance for the OER and the HER opens new lines of research for the design of nanocatalysts for alkaline electrochemical water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Dekel, J. Power Sources 375, 158 (2018).

    Article  CAS  Google Scholar 

  2. S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P. E. Karthik, and S. Kundu, Energy Environ. Sci. 11, 744 (2018).

    CAS  Google Scholar 

  3. W. Wu, Y. Wu, D. Zheng, K. Wang, and Z. Tang, Electrochim. Acta 320, 134568 (2019).

    CAS  Google Scholar 

  4. B. Malik, S. Anantharaj, K. Karthick, D. K. Pattanayak, and S. Kundu, Catal. Sci. Technol. 7, 2486 (2017).

    CAS  Google Scholar 

  5. J. Ding, Q. Shao, Y. Feng, and X. Huang, Nano Energy 47, 1 (2018).

    CAS  Google Scholar 

  6. J. Wang, Y. Ji, R. Yin, Y. Li, Q. Shao, and X. Huang, J. Mater. Chem. A 7, 6411 (2019).

    CAS  Google Scholar 

  7. D. Liyanage, D. Li, Q. Cheek, H. Baydoun, and S. Brock, J. Mater. Chem. A 5, 17609 (2017).

    CAS  Google Scholar 

  8. T. Bhowmik, M.K. Kundu, and S. Barman, ACS Appl. Mater. Inter. 8, 28678 (2016).

    CAS  Google Scholar 

  9. Y. Zheng, Y. Jiao, Y. Zhu, L. Li, Y. Han, Y. Chen, M. Jaroniec, and S. Qiao, J. Am. Chem. Soc. 138, 16174 (2016).

    CAS  Google Scholar 

  10. P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, and Q. Chen, J. Mater. Chem. A 5, 5475 (2017).

    CAS  Google Scholar 

  11. J. Yu, Y. Guo, S. Miao, M. Ni, W. Zhou, and Z. Shao, ACS Appl. Mater. Inter. 10, 34098 (2018).

    CAS  Google Scholar 

  12. D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S.H. Joo, and K. Lee, Small 13, 1700052 (2017).

    Google Scholar 

  13. A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubián, E. Martínez-Gurra, and J. Rodríguez-Varela, ChemElectroChem. 6, 4902 (2019).

    CAS  Google Scholar 

  14. A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E. Martínez G., and F.J. Rodríguez-Varela, Appl. Catal. B: Environ. 209, 455 (2017).

    CAS  Google Scholar 

  15. A. Chalgin, C. Song, P. Tao, W. Shang, T. Deng, and J. Wu, Prog. Nat. Sci. Mater. DOI: 10.1016/j.pnsc.2020.01.003.

  16. M. Salazar-Oropeza, B. Escobar-Morales, E. Reguera, F.J. Rodriguez-Varela, and I.L. Alonso-Lemus, ECS Transactions 86, 595 (2018).

    CAS  Google Scholar 

  17. J. Soleimannejad, and C. White, Organometallics 24, 2538 (2005).

    CAS  Google Scholar 

  18. E. Hodson, and S.J. Simpson, Polyhedron 23, 2695 (2004).

    CAS  Google Scholar 

  19. A. Obreja, D. Cristea, R. Gavrila, V. Schiopu-Tucureanu, A. Dinescu, M. Danila, and C. Florin, Appl. Surf. Sci. 276, 458 (2013).

    CAS  Google Scholar 

  20. R. Jabari Seresht, M. Jahanshahi, A. Rashidi, and A.A. Ghoreyshi, Iran. J. Energy Environ. 4, 53 (2013).

    Google Scholar 

  21. D.W. Lee, L. De Los Santos V., J.W. Seo, L.L. Felix, A. Bustamante D., J.M. Cole, and C.H.W. Barnes, J. Phys. Chem. B 114, 5723 (2010).

    CAS  Google Scholar 

  22. M. Bonelli, A. Ferrari, A. Fioravanti, A. Miotello, and P. Ossi, MRS Proceedings 593, 359 (2011).

    Google Scholar 

  23. N.A. Sánchez, C. Rincón, G. Zambrano, H. Galindo, and P. Prieto, Thin Solid Films 373, 247 (2000).

    Google Scholar 

  24. M. Dresselhaus, A. Jorio, A. Filho, and R. Saito, Philos. Trans. R. Soc. A 368, 5355 (2010).

    CAS  Google Scholar 

  25. A. Kaniyoor, and S. Ramaprabhu, AIP Adv. 2, 032183 (2012).

    Google Scholar 

  26. S. Claramunt, A. Varea, D. Lopez-Diaz, M. Mercedes Velazquez, A. Cornet, and A. Cirera, J. Phys. Chem. C 119, 10123 (2015).

    CAS  Google Scholar 

  27. R.P. Antony, L.K. Preethi, B. Gupta, T. Mathews, S. Dash, and A.K. Tyagi, Mater. Res. Bull. 70, 60 (2015).

    CAS  Google Scholar 

  28. E. Bekyarova, S. Sarkar, F. Wang, M.E. Itkis, I. Kalinina, X. Tian, and R.C. Haddon, Acc. Chem. Res. 46, 65 (2013).

    CAS  Google Scholar 

  29. D. Favero, V.R.R. Marcon, T. Barcellos, C.M. Gómez, M.J. Sanchis, M. Carsí, C.A. Figueroa, and O. Bianchi, J. Mol. Liq. 285, 136 (2019).

    CAS  Google Scholar 

  30. B. Zahed, and H. Hassan, Appl. Surf. Sci. 328, 536 (2015).

    CAS  Google Scholar 

  31. R. Panickar, C.B. Sobhan, and S. Chakravorti, Vacuum 172, 109108 (2020).

    CAS  Google Scholar 

  32. S. Esiner, R. Willems, A. Furlan, W. Li, M. Wienk, and R. Janssen, J. Mater. Chem. A 3, 23936 (2015).

    CAS  Google Scholar 

  33. Q. Dang, Int. J. Electrochem. Sci. 12, 10187 (2017).

    CAS  Google Scholar 

  34. E. Antolini, and F. Cardellini, J. Alloys Compd. 315, 118 (2001).

    CAS  Google Scholar 

  35. I.-H. Ko, W.-D. Lee, J.Y. Baek, Y.-E. Sung, and H.-I. Lee, Mater. Chem. Phys. 183, 11 (2016).

    CAS  Google Scholar 

  36. J. Zhang, X. Qu, Y. Han, L. Shen, S. Yin, G. Li, Y. Jiang, and S. Sun, Appl. Catal. B: Environ. 263, 118345 (2020).

    CAS  Google Scholar 

  37. A. Lewera, W.P. Zhou, C. Vericat, J.H. Chung, R. Haasch, A. Wieckowski, and P.S. Bagus, Electrochim. Acta 51, 3950 (2006).

    CAS  Google Scholar 

  38. V. Dubkov, S. Mironov, K. Chizh, and V. Yuryev, J. Phys. Conf. Series 816, 12011 (2016).

    Google Scholar 

  39. J. Yin, W. Cai, Y. Zheng, and L. Zhao, Surf. Coat. Technol. 198, 329 (2005).

    CAS  Google Scholar 

  40. C. Dong, Z. Li, L. Zhang, G. Li, H. Yao, J. Wang, Q. Liu, and Z. Li, Diam. Relat. Mater. 92, 32 (2019).

    CAS  Google Scholar 

  41. R. Jiang, D.T. Tran, J. Li, and D. Chu, Energy Environ. Mater. 2, 201 (2019).

    CAS  Google Scholar 

  42. A.R. Corpuz, K.N. Wood, S. Pylypenko, A.A. Dameron, P. Joghee, T.S. Olson, G. Bender, H.N. Dinh, T. Gennett, R.M. Richards, and R. O’Hayre, J. Power Sources 248, 296 (2014).

    CAS  Google Scholar 

  43. J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, and M. Ni, ACS Catal. 9, 9973 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Rodríguez-Varela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Loyola, J.C., Alonso-Lemus, I.L., Sánchez-Castro, M.E. et al. Surface Functionalization of Ordered Mesoporous Hollow Carbon Spheres with Ru Organometallic Compounds as Supports of Low-Pt Content Nanocatalysts for Alkaline Hydrogen and Oxygen Evolution Reactions. MRS Advances 5, 2973–2989 (2020). https://doi.org/10.1557/adv.2020.367

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.367

Navigation