Skip to main content
Log in

Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, surface-enhanced Raman scattering (SERS) has been successfully used in the non-invasive detection of bladder tumor (BCa). The internal standard method was considered as an effective ratiometric strategy for calibrating signal fluctuation originated from the interference of measurement conditions and samples. However, it is still difficult to detect the target mRNA quantitatively using the current ratiometric SERS nanosensors. In this study, we developed an internal reference based ratiometric SERS assay. Two kinds of molecular beacons (MB) carrying Raman reporter molecules were anchored on sea-urchin-like Au nanoclusters (AuNCs). Thymidine kinase1 (TK1) MBs with hexachlorofluorescein (HEX) were used to capture tumor biomarker TK1 mRNA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) MBs with 5(6)-carboxyfluorescein (FAM) were used to offer internal standard signals. The internal reference GAPDH MB can reflect the consistent content of the GAPDH mRNA in single cells. The ratiometric method (I745/I645) can more accurately reflect the content of target mRNA in single cells. The ratiometric nanoprobes had excellent stability (coefficient of variation: 0.3%), high sensitivity (detection limit: 3.4 pM), high specificity (capable of single-base mismatch recognition) and ribozyme-resistant stability. Notably, the nanoprobes can effectively distinguish BCa cells from normal cells, and it was easy to contour the single BCa cell using the ratiometric method. By combining asymmetric polymerase chain reaction (PCR) and ratiometric nanoprobes, it was easy to distinguish the SERS ratio (I745/I645) as low concentration as 10−14 M. Further clinical detection in urine samples from patients with BCa confirmed its potential for early noninvasive diagnosis of BCa with the sensitivity of 80% and specificity of 100%, which is superior to the current urine cytological method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burger, M.; Catto, J. W. F.; Dalbagni, G.; Grossman, H. B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L. A.; La Vecchia, C.; Shariat, S. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241.

    Article  Google Scholar 

  2. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2018. CA: Cancer J. Clin. 2018, 68, 7–30.

    Google Scholar 

  3. Jocham, D.; Stepp, H.; Waidelich, R. Photodynamic diagnosis in urology: State-of-the-art. Eur. Urol. 2008, 53, 1138–1150.

    Article  CAS  Google Scholar 

  4. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2018, 68, 394–424.

    Google Scholar 

  5. Biardeau, X.; Lam, O.; Ba, V.; Campeau, L.; Corcos, J. Prospective evaluation of anxiety, pain, and embarrassment associated with cystoscopy and urodynamic testing in clinical practice. Can. Urol. Assoc. J. 2017, 11, 104–110.

    Article  Google Scholar 

  6. Burke, D. M.; Shackley, D. C.; O’Reilly, P. H. The community-based morbidity of flexible cystoscopy. BJU Int. 2002, 89, 347–349.

    Article  CAS  Google Scholar 

  7. Têtu, B. Diagnosis of urothelial carcinoma from urine. Mod. Pathol. 2009, 22 Suppl 2, S53–S59.

    Article  Google Scholar 

  8. Lotan, Y.; Roehrborn, C. G. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: Results of a comprehensive literature review and meta-analyses. Urology 2003, 61, 109–118.

    Article  Google Scholar 

  9. Raitanen, M. P.; Aine, R.; Rintala, E.; Kallio, J.; Rajala, P.; Juusela, H.; Tammela, T. L. J.; Group, F. Differences between local and review urinary cytology in diagnosis of bladder cancer. An interobserver multicenter analysis. Eur. Urol. 2002, 41, 284–289.

    Article  Google Scholar 

  10. Mowatt, G.; Zhu, S.; Kilonzo, M.; Boachie, C.; Fraser, C.; Griffiths, T. R. L.; N’Dow, J.; Nabi, G.; Cook, J.; Vale, L. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol. Assess. 2010, 14, 1–331.

    Article  CAS  Google Scholar 

  11. Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K. et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci. 2019, 110, 408–419.

    Article  CAS  Google Scholar 

  12. Dudley, J. C.; Schroers-Martin, J.; Lazzareschi, D. V.; Shi, W. Y.; Chen, S. B.; Esfahani, M. S.; Trivedi, D.; Chabon, J. J.; Chaudhuri, A. A.; Stehr, H. et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 2019, 9, 500–509.

    Article  CAS  Google Scholar 

  13. Ma, M. H.; Zhang, P.; Liang, X.; Cui, D. X.; Shao, Q. Y.; Zhang, H. B.; Zhang, M. Z.; Yang, T.; Wang, L.; Zhang, N. et al. R11 peptides can promote the molecular imaging of spherical nucleic acids for bladder cancer margin identification. Nano Res., in press, https://doi.org/10.1007/s12274-021-3807-z.

  14. Akkilic, N.; Geschwindner, S.; Höök, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944.

    Article  CAS  Google Scholar 

  15. Pallaoro, A.; Mirsafavi, R. Y.; Culp, W. T. N.; Braun, G. B.; Meinhart, C. D.; Moskovits, M. Screening for canine transitional cell carcinoma (TCC) by SERS-based quantitative urine cytology. Nanomedicine: Nanotechnol., Biol. Med. 2018, 14, 1279–1287.

    Article  CAS  Google Scholar 

  16. Shao, X. G.; Pan, J. H.; Wang, Y. Q.; Zhu, Y. J.; Xu, F.; Shangguan, X.; Dong, B. J.; Sha, J. J.; Chen, N.; Chen, Z. Y. et al. Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study. Nanomedicine: Nanotechnol., Biol. Med. 2017, 13, 1051–1059.

    Article  CAS  Google Scholar 

  17. Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

    Article  Google Scholar 

  18. Ngo, H. T.; Wang, H. N.; Fales, A. M.; Vo-Dinh, T. Plasmonic SERS biosensing nanochips for DNA detection. Anal. Bioanal. Chem. 2016, 408, 1773–1781.

    Article  CAS  Google Scholar 

  19. Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450.

    Article  CAS  Google Scholar 

  20. Pang, Y. F.; Wang, C. G.; Lu, L. C.; Wang, C. W.; Sun, Z. W.; Xiao, R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 2019, 130, 204–213.

    Article  CAS  Google Scholar 

  21. Lin, D.; Wu, Q.; Qiu, S. F.; Chen, G. N.; Feng, S. Y.; Chen, R.; Zeng, H. S. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomedicine: Nanotechnol., Biol. Med. 2019, 22, 102100.

    Article  CAS  Google Scholar 

  22. Restaino, S. M.; White, I. M. Real-time multiplexed PCR using surface enhanced Raman spectroscopy in a thermoplastic chip. Lab Chip 2018, 18, 832–839.

    Article  CAS  Google Scholar 

  23. Peng, R. Y.; Si, Y. M.; Deng, T.; Zheng, J.; Li, J. S.; Yang, R. H.; Tan, W. H. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem. Commun. 2016, 52, 8553–8556.

    Article  CAS  Google Scholar 

  24. Liu, W.; Li, W. T.; Li, Y. H.; Li, J. F.; Bai, H.; Zou, M. Q.; Xi, G. C. Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging. Nano Res. 2021, in press, https://doi.org/10.1007/s12274-021-3726-z.

    Google Scholar 

  25. Faulds, K.; Smith, W. E.; Graham, D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 2004, 76, 412–417.

    Article  CAS  Google Scholar 

  26. Fan, S. S.; Cheng, J.; Liu, Y.; Wang, D. F.; Luo, T.; Dai, B.; Zhang, C.; Cui, D. X.; Ke, Y. G.; Song, J. Proximity-induced pattern operations in reconfigurable DNA origami Domino array. J. Am. Chem. Soc. 2020, 142, 14566–14573.

    Article  CAS  Google Scholar 

  27. Li, Y. E.; Wang, Z.; Mu, X. J.; Ma, A. N.; Guo, S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol. Adv. 2017, 35, 168–177.

    Article  CAS  Google Scholar 

  28. Qian, X. M.; Zhou, X.; Nie, S. M. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc. 2008, 130, 14934–14935.

    Article  Google Scholar 

  29. Ren, L. J.; Chen, X. X.; Feng, C.; Ding, L.; Liu, X. M.; Chen, T. S.; Zhang, F.; Li, Y. L.; Ma, Z. L.; Tian, B. et al. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Res. 2020, 13, 2165–2174.

    Article  CAS  Google Scholar 

  30. Guo, T.; Li, W. M.; Qian, L.; Yan, X. L.; Cui, D. X.; Zhao, J. B.; Ni, H. B.; Zhao, X. W.; Zhang, Z. P.; Li, X. F. et al. Highly-selective detection of EGFR mutation gene in lung cancer based on surface enhanced Raman spectroscopy and asymmetric PCR. J. Pharmaceut. Biomed. Anal. 2020, 190, 113522.

    Article  CAS  Google Scholar 

  31. Zhang, P.; Zhang, Y. N.; Liu, W. H.; Cui, D. X.; Zhao, X. W.; Song, J.; Guo, T.; Ni, H. B.; Zhang, M. Z.; Zhang, H. B. et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer. J. Biomed. Nanotechnol. 2019, 15, 1589–1597.

    Article  CAS  Google Scholar 

  32. Meng, X. Y.; Wang, H. Y.; Chen, N.; Ding, P.; Shi, H. Y.; Zhai, X.; Su, Y. Y.; He, Y. A graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal. Chem. 2018, 90, 5646–5653.

    Article  CAS  Google Scholar 

  33. Zhang, Y.; Yan, Y. R.; Chen, W. H.; Cheng, W.; Li, S. Q.; Ding, X. J.; Li, D. D.; Wang, H.; Ju, H. X.; Ding, S. J. A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens. Bioelectron. 2015, 68, 343–349.

    Article  CAS  Google Scholar 

  34. He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification. J. Mater. Chem. B 2019, 7, 2643–2647.

    Article  CAS  Google Scholar 

  35. Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

    Article  CAS  Google Scholar 

  36. Wu, Y.; Xiao, F. B.; Wu, Z. Y.; Yu, R. Q. Novel aptasensor platform based on ratiometric surface-enhanced Raman spectroscopy. Anal. Chem. 2017, 89, 2852–2858.

    Article  CAS  Google Scholar 

  37. Chen, J. Y.; Wu, Y.; Fu, C. C.; Cao, H. Y.; Tan, X. P.; Shi, W. B.; Wu, Z. Y. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosens. Bioelectron. 2019, 143, 111619.

    Article  CAS  Google Scholar 

  38. Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

    Article  CAS  Google Scholar 

  39. Laing, S.; Gracie, K.; Faulds, K. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 2016, 45, 1901–1918.

    Article  CAS  Google Scholar 

  40. Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 2012, 84, 2062–2066.

    Article  CAS  Google Scholar 

  41. Yuan, P. Y.; Mao, X.; Liew, S. S.; Wu, S.; Huang, Y.; Li, L.; Yao, S. Q. Versatile multiplex endogenous RNA detection with simultaneous signal normalization using mesoporous silica nanoquenchers. ACS Appl. Mater. Interfaces 2020, 12, 57695–57709.

    Article  CAS  Google Scholar 

  42. Yeo, D. C.; Wiraja, C.; Paller, A. S.; Mirkin, C. A.; Xu, C. J. Abnormal scar identification with spherical-nucleic-acid technology. Nat. Biomed. Eng. 2018, 2, 227–238.

    Article  CAS  Google Scholar 

  43. Ye, S. J.; Li, X. X.; Wang, M. L.; Tang, B. Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal. Chem. 2017, 89, 5124–5130.

    Article  CAS  Google Scholar 

  44. Zhang, P.; Zhang, Y. N.; Liu, W. H.; Cui, D. X.; Zhao, X. W.; Song, J.; Guo, T.; Ni, H. B.; Zhang, M. Z.; Zhang, H. B. et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer. J. Biomed. Nanotechnol. 2019, 15, 1589–1597.

    Article  CAS  Google Scholar 

  45. Tian, F. R.; Conde, J.; Bao, C. C.; Chen, Y. S.; Curtin, J.; Cui, D. X. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 2016, 106, 87–97.

    Article  CAS  Google Scholar 

  46. Wang, L.; Guo, T.; Lu, Q.; Yan, X. L.; Zhong, D. X.; Zhang, Z. P.; Ni, Y. F.; Han, Y.; Cui, D. X.; Li, X. F. et al. Sea-urchin-like Au nanocluster with surface-enhanced Raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl. Mater. Interfaces 2015, 7, 359–369.

    Article  CAS  Google Scholar 

  47. Wang, X. S.; Yang, D. P.; Huang, P.; Li, M.; Li, C.; Chen, D.; Cui, D. X. Hierarchically assembled Au microspheres and sea urchin-like architectures: Formation mechanism and SERS study. Nanoscale 2012, 4, 7766–7772.

    Article  CAS  Google Scholar 

  48. Li, G. F.; Yao, Y.; Wang, Z.; Zhao, M.; Xu, J. C.; Huang, L. W.; Zhu, G. M.; Bao, G. J.; Sun, W. S.; Hong, L. et al. Switchable skeletal rearrangement of Dihydroisobenzofuran Acetals with Indoles. Org. Lett. 2019, 21, 4313–4317.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81901838), the Key Research and Development Plan in Shaanxi Province (Nos. 2020SF-123 and 2020SF-195), the Natural Science Foundation of Zhejiang Province (No. LQ21H160041), and the Medical Research Program of Department of Science and Technology of Xi’an, Shaanxi Province (No. 2019115713YX012SF048(4)). We thank Mengzhao Zhang, Qiuya Shao, Lu Wang and Lu Zhang at Department of Urology, the First Affiliated Hospital, Xi’an Jiaotong University for their support. We also thank Dr. Yu Wang at Instrument Analysis Center of Xi’an Jiaotong University for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Jinhai Fan.

Electronic Supplementary Material

12274_2021_3902_MOESM1_ESM.pdf

Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Zhang, P., Ma, M. et al. Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer. Nano Res. 15, 3487–3495 (2022). https://doi.org/10.1007/s12274-021-3902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3902-1

Keywords

Navigation