Skip to main content
Log in

Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

BCL-2 gene as well as its products is recognized as a promising target for the molecular targeted therapy of tumors. However, due to certain defense measures of tumor cells, the therapeutic effect based on the gene silencing of BCL-2 is greatly reduced. Here we fabricate a smart response nucleic acid therapeutic that could silence the gene effectively through a dual-targeted and cascade-enhanced strategy. In brief, nano-graphene oxide (GO), working as a nano-carrier, is loaded with a well-designed DNAzyme, which can target and silence the BCL-2 mRNA. Furthermore, upon binding with the BCL-2 mRNA, the enzymatic activity of the DNAzyme can be initiated, cutting a substrate oligonucleotide to produce an anti-nucleolin aptamer AS1411. Nucleolin, a nucleolar phosphoprotein, is known as a stabilizer of BCL-2 mRNA. Via binding and inactivating the nucleolin, AS1411 can destabilize BCL-2 mRNA. By this means of simultaneously targeting mRNA and its stabilizer in an integrated system, effective silencing of the BCL-2 gene of tumor cells is achieved at both the cellular and in vivo levels. After being dosed with this nucleic acid therapeutic and without any chemotherapeutics, apoptosis of tumor cells at the cellular level and apparent shrinkage of tumors in vivo are observed. By labeling a molecular beacon on the substrate of DNAzyme, visualization of the enzymatic activity as well as the tumor in vivo can be also achieved. Our work presents a pure bio-therapeutic strategy that has positive implications for enhancing tumor treatment and avoiding side effects of chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delbridge, A. R. D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ.2015, 22, 1071–1080.

    CAS  Google Scholar 

  2. Pettersson, M.; Jernberg-Wiklund, H.; Larsson, L. G.; Sundstrom, C.; Givol, I.; Tsujimoto, Y.; Nilsson, K. Expression of the bcl-2 gene in human multiple myeloma cell lines and normal plasma cells. Blood1992, 79, 495–502.

    CAS  Google Scholar 

  3. Ma, L. Y.; Han, M.; Keyoumu, Z.; Wang, H.; Keyoumu, S. Immunotherapy of dual-function vector with both immunostimulatory and B-cell lymphoma 2 (Bcl-2)-silencing effects on gastric carcinoma. Med. Sci. Monit.2017, 23, 1980–1991.

    CAS  Google Scholar 

  4. Du, Y.; Ji, X. K. Bcl-2 down-regulation by small interfering RNA induces Beclin1-dependent autophagy in human SGC-7901 cells. Cell Biol. Int.2014, 38, 1155–1162.

    CAS  Google Scholar 

  5. Konopleva, M.; Letai, A. BCL-2 inhibition in AML: An unexpected bonus? Blood2018, 132, 1007–1012.

    CAS  Google Scholar 

  6. Bhola, P. D.; Letai, A. Mitochondria-judges and executioners of cell death sentences. Mol. Cell2016, 61, 695–704.

    CAS  Google Scholar 

  7. Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer2005, 5, 876–885.

    CAS  Google Scholar 

  8. Yang, W. Q.; Zhang, Y. RNAi-mediated gene silencing in cancer therapy. Expert Opin. Biol. Ther.2012, 12, 1495–1504.

    CAS  Google Scholar 

  9. Chen, X. X.; Chen, T. S.; Ren, L. J.; Chen, G. F.; Gao, X. H.; Li, G. X.; Zhu, X. L. Triplex DNA nanoswitch for pH-sensitive release of multiple cancer drugs. ACS Nano2019, 13, 7333–7344.

    CAS  Google Scholar 

  10. Tai, W. Y.; Li, J. W.; Corey, E.; Gao, X. H. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng.2018, 2, 326–337.

    CAS  Google Scholar 

  11. Tai, W. Y.; Gao, X. H. Functional peptides for siRNA delivery. Adv. Drug Deliv. Rev.2017, 110–111, 157–168.

    Google Scholar 

  12. Karnati, H. K.; Yalagala, R. S.; Undi, R.; Pasupuleti, S. R.; Gutti, R. K. Therapeutic potential of siRNA and DNAzymes in cancer. Tumor Biol.2014, 35, 9505–9521.

    CAS  Google Scholar 

  13. Liao, Z. X.; Chuang, E. Y.; Lin, C. C.; Ho, Y. C.; Lin, K. J.; Cheng, P. Y.; Chen, K. J.; Wei, H. J.; Sung, H. W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumorspecific chemotherapy that overcomes multidrug resistance. J. Control. Release2015, 208, 42–51.

    CAS  Google Scholar 

  14. Zhang, J. J.; Lan, T.; Lu, Y. Molecular engineering of functional nucleic acid nanomaterials toward in vivo applications. Adv. Healthc. Mater.2019, 8, 1801158.

    Google Scholar 

  15. Chen, X. X.; Zhao, J.; Chen, T. S.; Gao, T.; Zhu, X. L.; Li, G. X. Nondestructive analysis of tumor-associated membrane protein integrating imaging and amplified detection in situ based on dual-labeled DNAzyme. Theranostics2018, 8, 1075–1083.

    CAS  Google Scholar 

  16. Otake, Y.; Soundararajan, S.; Sengupta, T. K.; Kio, E. A.; Smith, J. C.; Pineda-Roman, M.; Stuart, R. K.; Spicer, E. K.; Fernandes, D. J. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood2007, 109, 3069–3075.

    CAS  Google Scholar 

  17. Soundararajan, S.; Chen, W.; Spicer, E. K.; Courtenay-Luck, N.; Fernandes, D. J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res.2008, 68, 2358–2365.

    CAS  Google Scholar 

  18. Ishimaru, D.; Zuraw, L.; Ramalingam, S.; Sengupta, T. K.; Bandyopadhyay, S.; Reuben, A.; Fernandes, D. J.; Spicer, E. K. Mechanism of regulation of bcl-2 mRNA by nucleolin and a plus U-rich element-binding factor 1 (AUF1). J. Biol. Chem.2010, 285, 27182–27191.

    CAS  Google Scholar 

  19. He, Z. M.; Zhang, P. H.; Li, X.; Zhang, J. R.; Zhu, J. J. A targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery. Sci. Rep.2016, 6, 22737.

    CAS  Google Scholar 

  20. Oun, R.; Moussa, Y. E.; Wheate, N. J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans.2018, 47, 6645–6653.

    CAS  Google Scholar 

  21. Lawrie, T. A.; Gillespie, D.; Dowswell, T.; Evans, J.; Erridge, S.; Vale, L.; Kernohan, A.; Grant, R. Long-term neurocognitive and other side effects of radiotherapy, with or without chemotherapy, for glioma. Cochrane Database Syst. Rev.2019, 8, CD013047.

    Google Scholar 

  22. Cho, E. A.; Moloney, F. J.; Cai, H.; Au-Yeung, A.; China, C.; Scolyer, R. A.; Yosufi, B.; Raftery, M. J.; Deng, J. Z.; Morton, S. W. et al. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: A phase 1 first-in-human trial (DISCOVER). Lancet2013, 381, 1835–1843.

    CAS  Google Scholar 

  23. Santoro, S. W.; Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA1997, 94, 4262–4266.

    CAS  Google Scholar 

  24. Wang, H. M.; Chen, Y. Q.; Wang, H.; Liu, X. Q.; Zhou, X.; Wang, F. DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem., Int. Ed.2019, 58, 7380–7384.

    CAS  Google Scholar 

  25. Qu, X. M.; Yang, F.; Chen, H.; Li, J.; Zhang, H. B.; Zhang, G. J.; Li, L.; Wang, L. H.; Song, S. P.; Tian, Y. et al. Bubble-mediated ultrasensitive multiplex detection of metal ions in three-dimensional DNA nanostructure-encoded microchannels. ACS Appl. Mater. Interfaces2017, 9, 16026–16034.

    CAS  Google Scholar 

  26. Su, Y. W.; Li, D.; Liu, B. Y.; Xiao, M. S.; Wang, F.; Li, L.; Zhang, X. L.; Pei, H. Rational design of framework nucleic acids for bioanalytical applications. ChemPlusChem2019, 84, 512–523.

    CAS  Google Scholar 

  27. Xiao, M. S.; Lai, W.; Man, T. T.; Chang, B. B.; Li, L.; Chandrasekaran, A. R.; Pei, H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev.2019, 119, 11631–11717.

    CAS  Google Scholar 

  28. Bakshi, S. F.; Guz, N.; Zakharchenko, A.; Deng, H.; Tumanov, A. V.; Woodworth, C. D.; Minko, S.; Kolpashchikov, D. M.; Katz, E. Magnetic field-activated sensing of mRNA in living cells. J. Am. Chem. Soc.2017, 139, 12117–12120.

    CAS  Google Scholar 

  29. Kim, S.; Ryoo, S. R.; Na, H. K.; Kim, Y. K.; Choi, B. S.; Lee, Y.; Kim, D. E.; Min, D. H. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun.2013, 49, 8241–8243.

    CAS  Google Scholar 

  30. Somasuntharam, I.; Yehl, K.; Carroll, S. L.; Maxwell, J. T.; Martinez, M. D.; Che, P. L.; Brown, M. E.; Salaita, K.; Davis, M. E. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials2016, 83, 12–22.

    CAS  Google Scholar 

  31. Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano2011, 5, 7000–7009.

    CAS  Google Scholar 

  32. Feng, L. Z.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine2011, 6, 317–324.

    CAS  Google Scholar 

  33. Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc.2010, 132, 9274–9276.

    CAS  Google Scholar 

  34. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med.2019, 70, 307–321.

    CAS  Google Scholar 

  35. Dam, D. H. M.; Lee, J. H.; Sisco, P. N.; Co, D. T.; Zhang, M.; Wasielewski, M. R.; Odom, T. W. Direct observation of nanoparticle–cancer cell nucleus interactions. ACS Nano2012, 6, 3318–3326.

    CAS  Google Scholar 

  36. Fan, H. H.; Zhao, Z. L.; Yan, G. B.; Zhang, X. B.; Yang, C.; Meng, H. M.; Chen, Z.; Liu, H.; Tan, W. H. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing. Angew. Chem., Int. Ed.2015, 54, 4801–4805.

    CAS  Google Scholar 

  37. Bagheri, Z.; Ranjbar, B.; Latifi, H.; Zibaii, M. I.; Moghadam, T. T.; Azizi, A. Spectral properties and thermal stability of AS1411 G-quadruplex. Int. J. Biol. Macromol.2015, 72, 806–811.

    CAS  Google Scholar 

  38. Butovskaya, E.; Soldà, P.; Scalabrin, M.; Nadai, M.; Richter, S. N. HIV-1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is inhibited by G-quadruplex ligands. ACS Infect. Dis.2019, 5, 2127–2135.

    CAS  Google Scholar 

  39. Yang, K.; Feng, L. Z.; Liu, Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv. Drug Deliv. Rev.2016, 105, 228–241.

    CAS  Google Scholar 

  40. Shi, L.; Mu, C. L.; Gao, T.; Chai, W. X.; Sheng, A. Z.; Chen, T. S.; Yang, J.; Zhu, X. L.; Li, G. X. Rhodopsin-like ionic gate fabricated with graphene oxide and isomeric DNA switch for efficient photocontrol of ion transport. J. Am. Chem. Soc.2019, 141, 8239–8243.

    CAS  Google Scholar 

  41. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev.2013, 42, 530–547.

    CAS  Google Scholar 

  42. Pan, W. Y.; Huang, C. C.; Lin, T. T.; Hu, H. Y.; Lin, W. C.; Li, M. J.; Sung, H. W. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine2016, 12, 431–438.

    CAS  Google Scholar 

  43. Zhu, X. L.; Shen, Y. L.; Cao, J. P.; Yin, L.; Ban, F. F.; Shu, Y. Q.; Li, G. X. Detection of microRNA SNPs with ultrahigh specificity by using reduced graphene oxide-assisted rolling circle amplification. Chem. Commun.2015, 51, 10002–10005.

    CAS  Google Scholar 

  44. Zhu, X. L.; Sun, L. Y.; Chen, Y. Y.; Ye, Z. H.; Shen, Z. M.; Li, G. X. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication. Biosens. Bioelectron.2013, 47, 32–37.

    CAS  Google Scholar 

  45. Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem., Int. Ed.2007, 46, 2023–2027.

    CAS  Google Scholar 

  46. Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed.2009, 48, 7668–7672.

    CAS  Google Scholar 

  47. Zhu, X. L.; Zhang, H. H.; Feng, C.; Ye, Z. H.; Li, G. X. A dualcolorimetric signal strategy for DNA detection based on graphene and DNAzyme. RSC Adv.2014, 4, 2421–2426.

    CAS  Google Scholar 

  48. Zhu, X. L.; Zhang, B.; Ye, Z. H.; Shi, H.; Shen, Y. L.; Li, G. X. An ATPresponsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture. Chem. Commun.2015, 51, 640–643.

    CAS  Google Scholar 

  49. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett.2010, 10, 3318–3323.

    CAS  Google Scholar 

  50. Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials2012, 33, 2206–2214.

    CAS  Google Scholar 

  51. Perrone, R.; Butovskaya, E.; Lago, S.; Garzino-Demo, A.; Pannecouque, C.; Palù, G.; Richter, S. N. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int. J. Antimicrob. Agents2016, 47, 311–316.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575088) and the Natural Science Foundation of Shanghai (No. 19ZR1474200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Tian or Xiaoli Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Chen, X., Feng, C. et al. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Res. 13, 2165–2174 (2020). https://doi.org/10.1007/s12274-020-2826-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2826-5

Keywords

Navigation