Skip to main content
Log in

Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photosensitized heterogeneous CO2 reduction (PHCR) has emerged as a promising means to convert CO2 into valuable chemicals, however, challenged by the relatively low carbonaceous product selectivity caused by the competing hydrogen evolution reaction (HER). Here, we report a PHCR system that couples Ru(bpy)32+ photosensitizer with {001} faceted LiCoO2 nanosheets photocatalyst to simultaneously yield 21.2 and 722 µmol·g−1·h−1 of CO, and 4.42 and 108 µmol·g−1·h−1 of CH4 under the visible light and the simulated sunlight irradiations, respectively, with completely suppressed HER. The experimental and theoretical studies reveal that the favored CO2 adsorption on the exposed Li sites on {001} faceted LiCoO2 surface is responsible for the completely suppressed HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048.

    Article  CAS  Google Scholar 

  2. Peter, S. C. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561.

    Article  CAS  Google Scholar 

  3. Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244–254.

    Article  CAS  Google Scholar 

  4. Shan, B.; Vanka, S.; Li, T. T.; Troian-Gautier, L.; Brennaman, M. K.; Mi, Z.; Meyer, T. J. Binary molecular-semiconductor p−n junctions for photoelectrocatalytic CO2 reduction. Nat. Energy 2019, 4, 290–299.

    Article  CAS  Google Scholar 

  5. Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. 2012, 109, 15560–15564.

    Article  CAS  Google Scholar 

  6. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

    Article  CAS  Google Scholar 

  7. Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

    Article  CAS  Google Scholar 

  8. Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 126, 1052–1056.

    Article  Google Scholar 

  9. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.

    Article  CAS  Google Scholar 

  10. Wang, Y.; Wang, S. B.; Lou, X. W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 17236–17240.

    Article  CAS  Google Scholar 

  11. Jiang, M.; Gao, Y. L.; Wang, Z. Y.; Ding, Z. X. Photocatalytic CO2 reduction promoted by a CuCo2O4 cocatalyst with homogeneous and heterogeneous light harvesters. Appl. Catal. B: Environ. 2016, 198, 180–188.

    Article  CAS  Google Scholar 

  12. Su, P. P.; Iwase, K.; Harada, T.; Kamiya, K.; Nakanishi, S. Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 2018, 9, 3941–3947.

    Article  CAS  Google Scholar 

  13. Li, C. H.; Tong, X.; Yu, P.; Du, W.; Wu, J.; Rao, H.; Wang, Z. M. Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 2019, 7, 16622–16642.

    Article  CAS  Google Scholar 

  14. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co−N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    Article  CAS  Google Scholar 

  15. Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

    Article  CAS  Google Scholar 

  16. Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

    Article  CAS  Google Scholar 

  17. Wang, S. B.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 51, 1517–1519.

    Article  CAS  Google Scholar 

  18. Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

    Article  CAS  Google Scholar 

  19. Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B: Environ. 2017, 209, 476–482.

    Article  CAS  Google Scholar 

  20. Liu, W.; Li, X.; Wang, C.; Pan, H.; Liu, W.; Wang, K.; Zeng, Q.; Wang, R.; Jiang, J. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

    Article  CAS  Google Scholar 

  21. Yang, H. Z.; Yang, D. R.; Wang, X. POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem., Int. Ed. 2020, 59, 15527–15531.

    Article  CAS  Google Scholar 

  22. Wang, Y.; Wang, S. B.; Zhang, S. L.; Lou, X. W. Formation of Hierarchical FeCoS2−CoS2 Double-Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO2. Angew. Chem., Int. Ed. 2020, 59, 11918–11922.

    Article  CAS  Google Scholar 

  23. Fu, Z. C.; Xu, R. C.; Moore, J. T.; Liang, F.; Nie, X. C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q. Q.; Yang, Z. et al. Highly efficient photocatalytic system constructed from cop/carbon nanotubes or graphene for visible-light-driven CO2 reduction. Chem. Eur. J. 2018, 24, 4273–4278.

    Article  CAS  Google Scholar 

  24. Yang, P. J.; Wang, R. R.; Tao, H. L.; Zhang, Y. F.; Titirici, M. M.; Wang, X. C. Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B: Environ. 2020, 280, 119454.

    Article  Google Scholar 

  25. Wang, S. B.; Hou, Y. D.; Wang, X. C. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335.

    Article  CAS  Google Scholar 

  26. Wang, Z. Y.; Jiang, M.; Qin, J. N.; Zhou, H.; Ding, Z. X. Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys. Chem. Chem. Phys. 2015, 17, 16040–16046.

    Article  CAS  Google Scholar 

  27. Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: adsorption and active sites engineering. Appl. Catal. B: Environ. 2020, 260, 118208.

    Article  CAS  Google Scholar 

  28. Zhao, K.; Zhao, S. L.; Gao, C.; Qi, J.; Yin, H. J.; Wei, D.; Mideksa, M. F.; Wang, X. L.; Gao, Y.; Tang, Z. Y. et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762.

    Article  Google Scholar 

  29. Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

    Article  CAS  Google Scholar 

  30. Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv. Mater. 2018, 30, e1704624.

    Article  Google Scholar 

  31. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.

    Article  CAS  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

    Article  CAS  Google Scholar 

  34. Ritzmann, A. M.; Pavone, M.; Muñoz-García, A. B.; Keith, J. A.; Carter, E. A. Ab initio DFT+ U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states. J. Mater. Chem. A 2014, 2, 8060–8074.

    Article  CAS  Google Scholar 

  35. Kramer, D.; Ceder, G. Tailoring the morphology of LiCoO2: A first principles study. Chem. Mater. 2009, 21, 3799–3809.

    Article  CAS  Google Scholar 

  36. Wang, J. H.; Li, L. Q.; Tian, H. Q.; Zhang, Y. L.; Che, X. L.; Li, G. S. Ultrathin LiCoO2 nanosheets: an efficient water-oxidation catalyst. ACS Appl. Mater. Interfaces 2017, 9, 7100–7107.

    Article  CAS  Google Scholar 

  37. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  CAS  Google Scholar 

  38. Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

    Article  CAS  Google Scholar 

  39. Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392.

    Article  CAS  Google Scholar 

  40. Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.

    Article  CAS  Google Scholar 

  41. Gummow, R. J.; Thackeray, M. M.; David, W. I. F.; Hull, S. Structure and electrochemistry of lithium cobalt oxide synthesised at 400 °C. Mater. Res. Bull. 1992, 27, 327–337.

    Article  CAS  Google Scholar 

  42. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  CAS  Google Scholar 

  43. Gandla, S.; Gollu, S. R.; Sharma, R.; Sarangi, V.; Gupta, D. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors. Appl. Phys. Lett. 2015, 107, 152102.

    Article  Google Scholar 

  44. Lehn, J. M.; Ziessel, R. Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t́-bipyridine-or 1,10-phenanthroline-ruthenium (II) complexes. J Organome. Chem. 1990, 382, 157–173.

    Article  CAS  Google Scholar 

  45. Wang, L. Y.; Tsang, C. S.; Liu, W.; Zhang, X. D.; Zhang, K.; Ha, E.; Kwok, W. M.; Park, J. H.; Lee, L. Y. S.; Wong, K. Y. Disordered layers on WO3 nanoparticles enable photochemical generation of hydrogen from water. J. Mater. Chem. A 2019, 7, 221–227.

    Article  CAS  Google Scholar 

  46. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

    Article  CAS  Google Scholar 

  47. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    Article  CAS  Google Scholar 

  48. Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

    Article  CAS  Google Scholar 

  49. Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

    Article  CAS  Google Scholar 

  50. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    Article  CAS  Google Scholar 

  51. Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Struct. 2021, 2, 2000061.

    Article  Google Scholar 

Download references

Acknowledgements

This work is finacially supported by Australian Research Council Discovery Projects (Nos. DP170104834 and DP200100965). The authors acknowledge that the XANES measurements were performed using [AS183/XAS/14123] beamline of Australian Synchrotron facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Zhao, Porun Liu or Huijun Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Liu, J., Zhao, K. et al. Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 15, 1061–1068 (2022). https://doi.org/10.1007/s12274-021-3599-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3599-1

Keywords

Navigation