Skip to main content
Log in

FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical N2 reduction offers a promising alternative to the Haber-Bosch process for sustainable NH3 synthesis at ambient conditions, but it needs efficient catalysts for the N2 reduction reaction (NRR). Here, we report that FeOOH quantum dots decorated graphene sheet acts as a superior catalyst toward enhanced electrocatalytic N2 reduction to NH3 under ambient conditions. In 0.1 M LiClO4, this hybrid attains a large NH3 yield rate and a high Faradaic efficiency of 27.3 µg·h−1·mg−1cat. and 14.6% at −0.4 V vs. reversible hydrogen electrode, respectively, rivalling the current efficiency of all Fe-based NRR electrocatalysts in aqueous media. It also shows strong durability during the electrolytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature2008, 451, 293–296.

    CAS  Google Scholar 

  2. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed.2003, 42, 2004–2008.

    Google Scholar 

  3. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the World. Nat. Geosci.2008, 1, 636–639.

    CAS  Google Scholar 

  4. Vegge, T.; Sørensen, R. Z.; Klerke, A.; Hummelshøj, J. S.; Johannessen, T.; Nørskov, J. K.; Christensen, C. H. Indirect hydrogen storage in metal ammines. In Solid-State Hydrogen Storage; Walker, G., Ed.; Woodhead Publishing: Cambridge, 2008; pp 533–564.

    Google Scholar 

  5. Ertl, G. Elementary steps in ammonia synthesis. In Catalytic Ammonia Synthesis: Fundamentals and Practice; Jennings, J. R., Ed.; Plenum: New York, 1991.

    Google Scholar 

  6. Dybkjaer, I. Ammonia production processes. In Ammonia: Catalysis and Manufacture; Nielsen, A., Ed.; Springer: Berlin Heidelberg, 1995; pp 199–308.

    Google Scholar 

  7. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci.2018, 11, 45–56.

    CAS  Google Scholar 

  8. Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today2017, 286, 57–68.

    CAS  Google Scholar 

  9. Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci.2019, 12, 1730–1750.

    CAS  Google Scholar 

  10. Zhao, R. B.; Xie, H. T.; Chang, L.; Zhang, X. X.; Zhu, X. J.; Tong, X.; Wang, T.; Luo, Y. L.; Wei, P. P.; Wang, Z. M. et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem2019, 1, 100011.

    Google Scholar 

  11. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc.2019, 141, 9664–9672.

    CAS  Google Scholar 

  12. Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun.2018, 9, 1795.

    Google Scholar 

  13. Xie, H. T.; Geng, X.; Zhu, X. J.; Luo, Y. L.; Chang, L.; Niu, X. B.; Shi, X. F.; Asiri, A. M.; Gao, S. Y.; Wang, Z. M. et al. PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J. Mater. Chem. A2019, 7, 24760–24764.

    CAS  Google Scholar 

  14. Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A2019, 7, 21674–21677.

    CAS  Google Scholar 

  15. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 Cycle. Adv. Mater.2017, 29, 1604799.

    Google Scholar 

  16. Huang, L. S.; Wu, J. W.; Han, P.; Al-Enizi, A. M.; Almutairi, T. M.; Zhang, L. J.; Zheng, G. F. NbO2 electrocatalyst toward 32% Faradaic efficiency for N2 fixation. Small Methods2019, 3, 1800386.

    Google Scholar 

  17. Huang, H.; Gong, F.; Wang, Y.; Wang, H. B.; Wu, X. F.; Lu, W. B.; Zhao, R. B.; Chen, H. Y.; Shi, X. F.; Asiri, A. M. et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Res.2019, 12, 1093–1098.

    CAS  Google Scholar 

  18. Zhang, S. B.; Zhao, C. J.; Liu, Y. Y.; Li, W. Y.; Wang, J. L.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun.2019, 55, 2952–2955.

    CAS  Google Scholar 

  19. Zhang, L.; Xie, X. Y.; Wang, H. B.; Ji, L.; Zhang, Y.; Chen, H. Y.; Li, T. S.; Luo, Y. L.; Cui, G. L.; Sun, X. P. Boosting electrocatalytic N2 reduction by MnO2 with oxygen vacancies. Chem. Commun.2019, 55, 4627–4630.

    CAS  Google Scholar 

  20. Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods2019, 3, 1900356.

    CAS  Google Scholar 

  21. Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed.2018, 57, 6073–6076.

    CAS  Google Scholar 

  22. Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Zhang, Y. N. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed.2019, 58, 18449–18453.

    CAS  Google Scholar 

  23. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed.2014, 53, 12855–12859.

    CAS  Google Scholar 

  24. Buscagan, T. M.; Oyala, P. H.; Peters, J. C. N2-to-NH3 conversion by a triphos-iron catalyst and enhanced turnover under photolysis. Angew. Chem., Int. Ed.2017, 56, 6921.

    CAS  Google Scholar 

  25. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor. ACS Sustainable Chem. Eng.2017, 5, 7393–7400.

    CAS  Google Scholar 

  26. Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustainable Chem. Eng.2017, 5, 10986–10995.

    CAS  Google Scholar 

  27. Cui, X. Y.; Tang, C.; Liu, X. M.; Wang, C.; Ma, W. J.; Zhang, Q. Highly-selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem.—Eur. J.2018, 24, 18494–18501.

    CAS  Google Scholar 

  28. Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale2018, 10, 14386–14389.

    CAS  Google Scholar 

  29. Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal.2018, 8, 9312–9319.

    CAS  Google Scholar 

  30. Xiang, X. J.; Wang, Z.; Shi, X. F.; Fan, M. K.; Sun, X. P. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods. ChemCatChem2018, 10, 4530–4535.

    CAS  Google Scholar 

  31. Suryanto, B. H. R.; Kang, C. S. M.; Wang, D. B.; Xiao, C. L.; Zhou, F. L.; Azofra, L. M.; Cavallo, L.; Zhang, X. Y.; MacFarlane, D. R. Rational electrode-electrolyte design for efficient ammonia electro-synthesis under ambient conditions. ACS Energy Lett.2018, 3, 1219–1224.

    CAS  Google Scholar 

  32. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed.2017, 56, 2699–2703.

    CAS  Google Scholar 

  33. Zhang, M. β-FeOOH nanorods enriched with bulk chloride as lithium-ion battery cathodes. J. Alloys Compd.2015, 648, 134–138.

    CAS  Google Scholar 

  34. Jung, J.; Song, K.; Bae, D. R.; Lee, S. W.; Lee, G.; Kang, Y. M. β-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low overpotential for lithium-air batteries. Nanoscale2013, 5, 11845–11849.

    CAS  Google Scholar 

  35. Xiao, F.; Li, W. T.; Fang, L. P.; Wang, D. S. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. J. Hazard. Mater.2016, 308, 11–20.

    CAS  Google Scholar 

  36. Xiong, Y. J.; Xie, Y.; Chen, S. W.; Li, Z. Q. Fabrication of self-supported patterns of aligned β-FeOOH nanowires by a low-temperature solution reaction. Chem.—Eur. J.2003, 9, 4991–4996.

    CAS  Google Scholar 

  37. Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun.2018, 54, 11332–11335.

    CAS  Google Scholar 

  38. Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun.2019, 55, 3987–3990.

    CAS  Google Scholar 

  39. Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater.2016, 26, 919–930.

    CAS  Google Scholar 

  40. Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc.2014, 136, 2843–2850.

    CAS  Google Scholar 

  41. Kuang, L. Y.; Liu, Y. Y.; Fu, D. D.; Zhao, Y. P. FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism. J. Colloid Interface Sci.2017, 490, 259–269.

    CAS  Google Scholar 

  42. Hummers Jr., W. S.; Offeman, R. E. Preparation of graphictic oxide. J. Am. Chem. Soc.1958, 80, 1339.

    CAS  Google Scholar 

  43. Zhu, D.; Zhang, L. H.; Ruthe, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater.2013, 12, 836–841.

    CAS  Google Scholar 

  44. Watt, G. W.; Chrisp, J. D. Spectrophotometric method for the determination of hydrazine. Anal. Chem.1952, 24, 2006–2008.

    CAS  Google Scholar 

  45. Carvalho, A. P.; Meireles, L. A.; Malcata, F. X. Rapid spectrophotometric determination of nitrates and nitrites in marine aqueous culture media. Analusis1998, 26, 347–351.

    CAS  Google Scholar 

  46. Abdel-Samad, H.; Watson, P. R. An XPS study of the adsorption of chromate on goethite (a-FeOOH). Appl. Surf. Sci.1997, 108, 371–377.

    CAS  Google Scholar 

  47. Mikosch, H.; Uzunova, E. L.; Nikolov, G. St. Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: A DFT study. J. Phys. Chem. B2005, 109, 11119–11125.

    CAS  Google Scholar 

  48. Papai, I.; Goursot, A.; Fajula, F.; Plee, D.; Weber, J. Modeling of N2 and O2 adsorption in zeolites. J. Phys. Chem.1995, 99, 12925–12932.

    CAS  Google Scholar 

  49. Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun.2018, 9, 3485.

    Google Scholar 

  50. Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci.2019, 5, 116–121.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baozhan Zheng or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhao, J., Ji, L. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 13, 209–214 (2020). https://doi.org/10.1007/s12274-019-2600-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2600-8

Keywords

Navigation