Skip to main content
Log in

Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are ideal candidates for beyond-silicon nano-electronics because of their high mobility and low-cost processing. Recently, assembled massively aligned CNTs have emerged as an important platform for semiconductor electronics. However, realizing sophisticated complementary nano-electronics has been challenging due to the p-type nature of carbon nanotubes in air. Fabrication of n-type behavior field effect transistors (FETs) based on assembled aligned CNT arrays is needed for advanced CNT electronics. Here in this paper, we report a scalable process to make n-type behavior FETs based on assembled aligned CNT arrays. Air-stable and high-performance n-type behavior CNT FETs are achieved with high yield by combining the atomic layer deposition dielectric and metal contact engineering. We also systematically studied the contribution of metal contacts and atomic layer deposition passivation in determining the transistor polarity. Based on these experimental results, we report the successful demonstration of complementary metal-oxide-semiconductor inverters with good performance, which paves the way for realizing the promising future of carbon nanotube nano-electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    Article  CAS  Google Scholar 

  2. Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.

    Article  CAS  Google Scholar 

  3. Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

    Article  CAS  Google Scholar 

  4. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    Article  CAS  Google Scholar 

  5. Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.

    Article  CAS  Google Scholar 

  6. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  7. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  CAS  Google Scholar 

  8. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    Article  CAS  Google Scholar 

  9. Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944–948.

    Article  CAS  Google Scholar 

  10. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  CAS  Google Scholar 

  11. Han, S. J.; Tang, J. S.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865.

    Article  CAS  Google Scholar 

  12. Liu, J.; Wang, C.; Tu, X. M.; Liu, B. L.; Chen, L.; Zheng, M.; Zhou, C. W. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat. Commun. 2012, 3, 1199.

    Article  Google Scholar 

  13. Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

    Article  CAS  Google Scholar 

  14. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    Article  CAS  Google Scholar 

  15. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechmol. 2011, 6, 788–792.

    Article  CAS  Google Scholar 

  16. Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Flexible highperformance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.

    Article  CAS  Google Scholar 

  17. Park, S.; Vosguerichian, M.; Bao, Z. N. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

    Article  CAS  Google Scholar 

  18. Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

    Article  CAS  Google Scholar 

  19. Xiang, L.; Zhang, H.; Dong, G. D.; Zhong, D. L.; Han, J.; Liang, X. L.; Zhang, Z. Y.; Peng, L. M.; Hu, Y. F. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 2018, 1, 237–245.

    Article  Google Scholar 

  20. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    Article  CAS  Google Scholar 

  21. Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

    Article  CAS  Google Scholar 

  22. Tang, J. S.; Cao, Q.; Tulevski, G.; Jenkins, K. A.; Nela, L.; Farmer, D. B.; Han, S. J. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191–196.

    Article  CAS  Google Scholar 

  23. Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

    Article  CAS  Google Scholar 

  24. Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

    Article  CAS  Google Scholar 

  25. Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

    Article  Google Scholar 

  26. Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368, 850–856.

    Article  CAS  Google Scholar 

  27. Cao, Y.; Brady, G. J.; Gui, H.; Rutherglen, C.; Arnold, M. S.; Zhou, C. W. Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 2016, 10, 6782–6790.

    Article  CAS  Google Scholar 

  28. Rutherglen, C.; Kane, A. A.; Marsh, P. F.; Cain, T. A.; Hassan, B. I.; Alshareef, M. R.; Zhou, C. W.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539.

    Article  CAS  Google Scholar 

  29. Zhong, D. L.; Shi, H. W.; Ding, L.; Zhao, C. Y.; Liu, J. X.; Zhou, J. S.; Zhang, Z. Y.; Peng, L. M. Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Appl. Mater. Interfaces 2019, 11, 42496–42503.

    Article  CAS  Google Scholar 

  30. Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

    Article  CAS  Google Scholar 

  31. Wei, H.; Chen, H. Y.; Liyanage, L.; Wong, H. S. P.; Mitra, S. Air-stable technique for fabricating n-type carbon nanotube FETs. In Proceedings of 2011 International Electron Devices Meeting, Washington, USA, 2011, pp 23.2.1–23.2.4.

  32. Li, G. H.; Li, Q. Q.; Jin, Y. H.; Zhao, Y. D.; Xiao, X. Y.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale 2015, 7, 17693–17701.

    Article  CAS  Google Scholar 

  33. Tang, J. S.; Farmer, D.; Bangsaruntip, S.; Chiu, K. C.; Kumar, B.; Han, S. J. Contact engineering and channel doping for robust carbon nanotube NFETs. In Proceedings of 2017 International Symposium on VLSI Technology, Systems and Application, Hsinchu, China, 2017, pp 1–2.

  34. Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

    Article  CAS  Google Scholar 

  35. Brady, G. J.; Joo, Y.; Roy, S. S.; Gopalan, P.; Arnold, M. S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107.

    Article  Google Scholar 

  36. Kang, D. H.; Park, N.; Ko, J. H.; Bae, E.; Park, W. Oxygen-induced p-type doping of a long individual single-walled carbon nanotube. Nanotechnology 2005, 16, 1048–1052

    Article  CAS  Google Scholar 

  37. Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.

    Article  CAS  Google Scholar 

  38. Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599–4608.

    Article  CAS  Google Scholar 

  39. Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276–2284.

    Article  CAS  Google Scholar 

  40. Franklin, A. D.; Farmer, D. B.; Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 2014, 8, 7333–7339.

    Article  CAS  Google Scholar 

  41. Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

    Article  CAS  Google Scholar 

  42. Baranovskii, S. D.; Nenashev, A. V.; Oelerich, J. O.; Greiner, S. H. M.; Dvurechenskii, A. V.; Gebhard, F. Percolation description of charge transport in the random barrier model applied to amorphous oxide semiconductors. EPL Eur. Lett. 2019, 127, 57004

    Article  CAS  Google Scholar 

  43. Zavabeti, A.; Zhang, B. Y.; de Castro, I. A.; Ou, J. Z.; Carey, B. J.; Mohiuddin, M.; Datta, R. S.; Xu, C. L.; Mouritz, A. P.; McConville, C. F. et al. Green synthesis of low-dimensional aluminum oxide hydroxide and oxide using liquid metal reaction media: Ultrahigh flux membranes. Adv. Funct. Marer. 2018, 28, 1804057.

    Article  Google Scholar 

  44. Jinkins, K. R.; Chan, J.; Jacobberger, R. M.; Berson, A.; Arnold, M. S. Substrate-wide confined shear alignment of carbon nanotubes for thin film transistors. Adv. Electron. Mater. 2019, 5, 1800593.

    Article  Google Scholar 

  45. Moriyama, N.; Ohno, Y.; Kitamura, T.; Kishimoto, S.; Mizutani, T. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges. Nanotechnology 2010, 21, 165201.

    Article  CAS  Google Scholar 

  46. Rinkiö, M.; Johansson, A.; Zavodchikova, M. Y.; Toppari, J. J.; Nasibulin, A. G.; Kauppinen, E. I.; Törmä, P. High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New J. Phys. 2008, 10, 103019.

    Article  Google Scholar 

  47. Mudimela, P. R.; Grigoras, K.; Anoshkin, I. V.; Varpula, A.; Ermolov, V.; Anisimov, A. S.; Nasibulin, A. G.; Novikov, S.; Kauppinen, E. I. Single-walled carbon nanotube network field effect transistor as a humidity sensor. J. Sens. 2012, 2012, 496546.

    Article  Google Scholar 

  48. Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

    Article  CAS  Google Scholar 

  49. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun. 2012, 3, 1011.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Science Foundation (NSF) via SNM-IS Award (No. 1727523). A portion of the images and data used in this article were acquired at the Center for Electron Microscopy and Microanalysis, University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwu Zhou.

Electronic Supplementary Material

12274_2021_3567_MOESM1_ESM.pdf

Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jinkins, K.R., Cui, D. et al. Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and their application in complementary metal-oxide-semiconductor electronics. Nano Res. 15, 864–871 (2022). https://doi.org/10.1007/s12274-021-3567-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3567-9

Keywords

Navigation