Skip to main content
Log in

Short channel carbon nanotube thin film transistors with high on/off ratio fabricated by two-step fringing field dielectrophoresis

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

A two-step fringing field dielectrophoretic assembly method for carbon nanotube thin film transistors (CNT-TFTs) fabrication was demonstrated. Densely aligned CNT arrays were assembled at the source and drain electrodes sequentially which form a cascade structure of the aligned CNT arrays. The cascade structure reduces the possibility of percolating metallic pathways in the channel, which is beneficial to device performance. In this way, both high on/off current ratio I on/I off (up to 107) and high out-put current density (8.5 μA/μm) were obtained in short channel length (1–2.5 μm) CNT-TFTs. The reported CNT assembling strategy is site selective and highly efficient, which can be scaled up to large size substrates and leads to high throughput of CNT-TFTs fabrication.

摘要

本文发展了一种使用两步边缘场电泳制备碳纳米管薄膜晶体管的方法。利用该方法可以在晶体管的源电极和漏电极处分别得到高密度且有取向排列的碳纳米管阵列。通过控制源漏电极间距可以使这2个碳纳米管阵列在晶体管的沟道中交汇,形成级联结构的导电通路。这种级联结构不仅能有效地降低晶体管沟道中金属性碳纳米管形成导电通路的概率,而且大大减少了每条导电通路中的碳纳米管交叉结的数量,有利于提高器件的性能。利用该方案制备的短沟道(1–2.5 μm)碳纳米管薄膜晶体管的电流开关比高达107,输出电流密度达8.5 μA/μm。该碳纳米管薄膜的组装方法位置可控、制备效率及成品率高,且可以扩展到大尺寸的基片上,能够极大地提高碳管薄膜晶体管的生产效率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang C, Takei K, Takahashi T et al (2013) Carbon nanotube electronics—moving forward. Chem Soc Rev 42:2592–2609

    Article  Google Scholar 

  2. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Article  Google Scholar 

  3. Sun DM, Liu C, Ren WC et al (2013) A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9:1188–1205

    Article  Google Scholar 

  4. Zhang J, Fu Y, Wang C et al (2011) Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett 11:4852–4858

    Article  Google Scholar 

  5. Takahashi T, Yu Z, Chen K et al (2013) Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett 13:5425–5430

    Article  Google Scholar 

  6. Lau PH, Takei K, Wang C et al (2013) Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett 13:3864–3869

    Article  Google Scholar 

  7. Chen PC, Sukcharoenchoke S, Ryu K et al (2010) 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904

    Article  Google Scholar 

  8. Liyanage LS, Lee H, Patil N et al (2012) Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 6:451–458

    Article  Google Scholar 

  9. Wang C, Zhang JL, Ryu KM et al (2009) Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett 9:4285–4291

    Article  Google Scholar 

  10. Chen P, Fu Y, Aminirad R et al (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11:5301–5308

    Article  Google Scholar 

  11. Nougaret L, Happy H, Dambrine G et al (2009) 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl Phys Lett 94:243505

    Article  Google Scholar 

  12. Cao Q, Kim HS, Pimparkar N et al (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  Google Scholar 

  13. Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802

    Article  Google Scholar 

  14. Kocabas C, Pimparkar N, Yesilyurt O et al (2007) Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett 7:1195–1202

    Article  Google Scholar 

  15. Alam MA, Pimparkar N, Kumar S et al (2006) Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull 31:466–470

    Article  Google Scholar 

  16. Lobez JM, Han SJ, Afzali A et al (2014) Surface selective one-step fabrication of carbon nanotube thin films with high density. ACS Nano 8:4954–4960

    Article  Google Scholar 

  17. Engel M, Small JP, Steiner M et al (2008) Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2:2445–2452

    Article  Google Scholar 

  18. Joo Y, Brady GJ, Arnold MS et al (2014) Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 30:3460–3466

    Article  Google Scholar 

  19. Shekhar S, Stokes P, Khondaker SI (2011) Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5:1739–1746

    Article  Google Scholar 

  20. Stokes P, Khondaker SI (2010) High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl Phys Lett 96:083110

    Article  Google Scholar 

  21. Monica AH, Papadakis SJ, Osiander R et al (2008) Wafer-level assembly of carbon nanotube networks using dielectrophoresis. Nanotechnology 19:085303

    Article  Google Scholar 

  22. Rutherglen C, Jain D, Burke P (2008) Rf resistance and inductance of massively parallel single walled carbon nanotubes: direct, broadband measurements and near perfect 50 Ω impedance matching. Appl Phys Lett 93:083119

    Article  Google Scholar 

  23. Cao Q, Han SJ, Tulevski GS (2014) Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat Commun 5:5071

    Article  Google Scholar 

  24. Krupke R, Hennrich F, Löhneysen H et al (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    Article  Google Scholar 

  25. Brady GJ, Joo Y, Wu MY et al (2014) Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8:11614–11621

    Article  Google Scholar 

  26. Brady GJ, Joo Y, Singha RS et al (2014) High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl Phys Lett 104:083107

    Article  Google Scholar 

  27. Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  28. Lee HW, Yoon Y, Park S et al (2011) Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat Commun 2:541

    Article  Google Scholar 

  29. Lee JH, Liu DN, Wu ST (2008) Introduction to flat panel displays. Wiley, New York

    Google Scholar 

  30. Pimparkar N, Kocabas C, Kang SJ et al (2007) Limits of performance gain of aligned CNT over randomized network: theoretical predictions and experimental validation. IEEE Electron Device Lett 28:593–595

    Article  Google Scholar 

  31. Heinze S, Tersoff J, Martel R et al (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89:106801

    Article  Google Scholar 

  32. Javey A, Guo J, Paulsson M et al (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev Lett 92:106804

    Article  Google Scholar 

  33. Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  34. Schroder DK (2006) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  35. Cao Q, Xia M, Kocabas C et al (2007) Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl Phys Lett 90:023516

    Article  Google Scholar 

  36. Xia J, Dong G, Tian B et al (2016) Contact resistance effects in carbon nanotube thin film transistors. Acta Phys Chim Sin 32:1029–1035

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61321001), and Beijing Municipal Science & Technology Commission (Z141100003814006).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelei Liang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Xia, J. & Liang, X. Short channel carbon nanotube thin film transistors with high on/off ratio fabricated by two-step fringing field dielectrophoresis. Sci. Bull. 61, 794–800 (2016). https://doi.org/10.1007/s11434-016-1075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1075-1

Keywords

Navigation