Skip to main content
Log in

Highly elastic wrinkled structures for stable and low volume-expansion lithium-metal anodes

高弹性波浪结构的三维集流体构建稳定的锂金属负极

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Lithium (Li) metal is promising for high energy density batteries due to its low electrochemical redox potential and high specific capacity. However, the formation of dendrites and its tendency for large volume expansion during plating/stripping restrict the application of Li metal in practical scenarios. In this work, we developed reduced graphene oxide-graphitic carbon nitride (rGO-C3N4, GCN) with highly elastic and wrinkled structure as the current collector. Lithiophilic site C3N4 in GCN could reduce the nucleation overpotential. In addition, this material effectively inhibited electrode expansion during cycling. At the same time, due to its high elasticity, GCN could release the stress induced by Li deposition to maintain structural integrity of the electrode. Li-metal anodes with GCN exhibited small volume expansion, high Coulombic efficiency (CE) of 98.6% within 300 cycles and long cycling life of more than 1700 h. This work described and demonstrated a new approach to construct flexible current collectors for stable lithium-metal anodes.

摘要

锂金属由于低电化学还原电位和高比容量, 被认为是最具发展前景的负极材料. 然而, 锂枝晶和体积膨胀等问题严重制约了锂金属电池的应用发展. 本研究中, 我们制备了高弹性波浪结构的 rGO-C3N4 (GCN)作为三维集流体. GCN的高弹性可有效释放锂沉 积过程产生的应力, 保持电极结构完整, 减小电极体积膨胀. C3N4 的亲锂性可降低锂的形核过电位, 促进锂离子均匀沉积. GCN作为三维集流体的锂金属负极, 经300个循环后, 仍具有较高的库仑效率, 低的体积膨胀率和更长的循环寿命. 高弹性波浪结构三维集流体改善了锂金属负极的电化学性能, 为构建柔性三维集流体提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Y, Zhang Q, Chen J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci China Chem, 2019, 62: 533–548

    Article  CAS  Google Scholar 

  2. Park S, Jin HJ, Yun YS. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv Mater, 2020, 32: 2002193

    Article  CAS  Google Scholar 

  3. Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech, 2017, 12: 194–206

    Article  CAS  Google Scholar 

  4. Duan J, Zheng Y, Luo W, et al. Is graphite lithiophobic or lithiophilic? Natl Sci Rev, 2020, 7: 1208–1217

    Article  CAS  Google Scholar 

  5. Nanda S, Gupta A, Manthiram A. Anode-free full cells: A pathway to high-energy density lithium-metal batteries. Adv Energy Mater, 2021, 11: 2000804

    Article  CAS  Google Scholar 

  6. Li L, Li S, Lu Y. Suppression of dendritic lithium growth in lithium metal-based batteries. Chem Commun, 2018, 54: 6648–6661

    Article  CAS  Google Scholar 

  7. Liu S, Xia X, Deng S, et al. Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Mater, 2018, 15: 31–36

    Article  Google Scholar 

  8. He D, Liao Y, Cheng Z, et al. Facile one-step vulcanization of copper foil towards stable Li metal anode. Sci China Mater, 2020, 63: 1663–1671

    Article  CAS  Google Scholar 

  9. Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat Nanotechnol, 2020, 15: 94–98

    Article  CAS  Google Scholar 

  10. Yu SH, Huang X, Brock JD, et al. Regulating key variables and visualizing lithium dendrite growth: An Operando X-ray study. J Am Chem Soc, 2019, 141: 8441–8449

    Article  CAS  Google Scholar 

  11. Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater, 2017, 29: 1700007

    Article  Google Scholar 

  12. Wu S, Zhang Z, Lan M, et al. Lithiophilic Cu-CuO-Ni hybrid structure: Advanced current collectors toward stable lithium metal anodes. Adv Mater, 2018, 30: 1705830

    Article  Google Scholar 

  13. Chen Y, Ke X, Cheng Y, et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Mater, 2020, 26: 56–64

    Article  Google Scholar 

  14. Wu H, Zhang Y, Deng Y, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Sci China Mater, 2019, 62: 87–94

    Article  CAS  Google Scholar 

  15. Wu W, Duan J, Wen J, et al. A writable lithium metal ink. Sci China Chem, 2020, 63: 1483–1489

    Article  CAS  Google Scholar 

  16. Shen Z, Zhang W, Li S, et al. Tuning the interfacial electronic conductivity by artificial electron tunneling barriers for practical lithium metal batteries. Nano Lett, 2020, 20: 6606–6613

    Article  CAS  Google Scholar 

  17. Chen J, Zhao J, Lei L, et al. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Lett, 2020, 20: 3403–3410

    Article  CAS  Google Scholar 

  18. Luo Y, Li T, Zhang H, et al. New insights into the formation of silicon-oxygen layer on lithium metal anode via in situ reaction with tetraethoxysilane. J Energy Chem, 2021, 56: 14–22

    Article  Google Scholar 

  19. Han Y, Zhou Y, Zhu J, et al. Dual effects from in-situ polymerized gel electrolyte and boric acid for ultra-long cycle-life Li metal batteries. Sci China Mater, 2020, 63: 2344–2350

    Article  CAS  Google Scholar 

  20. Guan X, Wang A, Liu S, et al. Controlling nucleation in lithium metal anodes. Small, 2018, 14: 1801423

    Article  Google Scholar 

  21. Biswal P, Stalin S, Kludze A, et al. Nucleation and early stage growth of Li electrodeposits. Nano Lett, 2019, 19: 8191–8200

    Article  CAS  Google Scholar 

  22. Wu K, Zhao B, Yang C, et al. ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode. J Energy Chem, 2020, 43: 16–23

    Article  CAS  Google Scholar 

  23. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotech, 2016, 11: 626–632

    Article  CAS  Google Scholar 

  24. Zhou Y, Zhang X, Ding Y, et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv Mater, 2020, 32: 2003920

    Article  CAS  Google Scholar 

  25. Ye H, Zheng ZJ, Yao HR, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem Int Ed, 2019, 58: 1094–1099

    Article  CAS  Google Scholar 

  26. Chen X, Chen XR, Hou TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv, 2019, 5: eaau7728

    Article  CAS  Google Scholar 

  27. Chen J, Wen L, Liang J, et al. Tunable in situ stress and spontaneous microwrinkling of multiscale heterostructures. J Phys Chem C, 2019, 123: 26041–26046

    Article  CAS  Google Scholar 

  28. Ding F, Xu W, Graff GL, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc, 2013, 135: 4450–4456

    Article  CAS  Google Scholar 

  29. Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy, 2018, 3: 227–235

    Article  CAS  Google Scholar 

  30. Huang Y, Chen B, Duan J, et al. Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries. Angew Chem Int Ed, 2020, 59: 3699–3704

    Article  CAS  Google Scholar 

  31. Ye S, Wang L, Liu F, et al. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv Energy Mater, 2020, 10: 2002647

    Article  CAS  Google Scholar 

  32. Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv Energy Mater, 2019, 9: 1803186

    Article  Google Scholar 

  33. Kessler FK, Zheng Y, Schwarz D, et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat Rev Mater, 2017, 2: 17030

    Article  CAS  Google Scholar 

  34. Guo Y, Niu P, Liu Y, et al. An autotransferable g-C3N4Li+-modulating layer toward stable lithium anodes. Adv Mater, 2019, 31: 1900342

    Article  Google Scholar 

  35. Xu X, Zhang Q, Yu Y, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv Mater, 2016, 28: 9223–9230

    Article  CAS  Google Scholar 

  36. Wu Y, Yi N, Huang L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat Commun, 2015, 6: 6141

    Article  CAS  Google Scholar 

  37. Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels. Adv Mater, 2013, 25: 2219–2223

    Article  CAS  Google Scholar 

  38. Zhao Y, Feng J, Liu X, et al. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat Commun, 2014, 5: 4565

    Article  CAS  Google Scholar 

  39. Deng S, Berry V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater Today, 2016, 19: 197–212

    Article  CAS  Google Scholar 

  40. Pan L, Luo Z, Zhang Y, et al. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS Appl Mater Interfaces, 2019, 11: 44383–44389

    Article  CAS  Google Scholar 

  41. Song Q, Yan H, Liu K, et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation. Adv Energy Mater, 2018, 8: 1800564

    Article  Google Scholar 

  42. Zhang R, Chen XR, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed, 2017, 56: 7764–7768

    Article  CAS  Google Scholar 

  43. Wang H, Li Y, Li Y, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett, 2019, 19: 1326–1335

    Article  CAS  Google Scholar 

  44. Yang G, Chen J, Xiao P, et al. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J Mater Chem A, 2018, 6: 9899–9905

    Article  CAS  Google Scholar 

  45. Huang S, Yang H, Hu J, et al. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small, 2019, 15: 1904216

    Article  CAS  Google Scholar 

  46. Zhu W, Deng W, Zhao F, et al. Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Mater, 2019, 21: 107–114

    Article  Google Scholar 

  47. Wang T, Zhai P, Legut D, et al. S-doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes. Adv Energy Mater, 2019, 9: 1804000

    Article  Google Scholar 

  48. Li BQ, Chen XR, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes. Research, 2019, 2019: 1–11

    Article  Google Scholar 

  49. Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv Energy Mater, 2018, 8: 1800914

    Article  Google Scholar 

  50. Wang X, Pan Z, Wu Y, et al. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale, 2018, 10: 16562–16567

    Article  CAS  Google Scholar 

  51. Nie X, Zhang A, Liu Y, et al. Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes. Energy Storage Mater, 2019, 17: 341–348

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51525206 and 51927803), the National Key R&D Program of China (2016YFA0200100 and 2016YFB0100100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22010602), Liaoning Revitalization Talents Program (XLYC1908015), and China Petrochemical Cooperation (218025). The authors thank Mrs. Juan Li and Mr. Bo Wen for their valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Lu W prepared and characterized the samples. Chen J performed mechanical tests. Lu W, Yang H, and Sun C analyzed experimental data and prepared the manuscript. Li F supervised the project and revised the manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Feng Li  (李峰).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Wenwen Lu is a master’s candidate at the Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS). Her research interests include the syntheses and characterizations of 3D current collectors for lithium-metal anodes.

Feng Li is a professor of IMR, CAS. He received his PhD degree in materials science at IMR, CAS in 2001 supervised by Prof. Hui-Ming Cheng. He mainly works on the novel carbon-based and energy materials for lithium-ion batteries, lithium-sulfur batteries, electrochemical capacitors, and new devices. He obtained the award of the National Science Fund for Distinguished Young Scholars by the National Natural Science Foundation of China.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Yang, H., Chen, J. et al. Highly elastic wrinkled structures for stable and low volume-expansion lithium-metal anodes. Sci. China Mater. 64, 2675–2682 (2021). https://doi.org/10.1007/s40843-021-1676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1676-3

Keywords

Navigation