Skip to main content
Log in

Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles. Owing to the low-cost, naturally abundance, and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity, rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries. However, traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries. Here, we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al3+/H+ battery. The as-fabricated hybrid-ion battery (HIB) delivers a high specific capacity of 125 mAh·g−1 at 0.1 A·g−1 and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10,000 cycles at 2 A·g−1. In addition, the hydrogel-based electrolyte possesses smart function of thermoresponsive switching, which can effectively prevent thermal runaway for the batteries. The unprecedented long cycle stability, highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  3. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  CAS  Google Scholar 

  4. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  5. Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.

    Article  CAS  Google Scholar 

  6. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  CAS  Google Scholar 

  7. Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Inter. 2017, 9, 4404–4419.

    Article  CAS  Google Scholar 

  8. Canepa, P.; Gautam, G. S.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.

    Article  CAS  Google Scholar 

  9. Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.

    Article  CAS  Google Scholar 

  10. Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

    Article  CAS  Google Scholar 

  11. Wu, C.; Gu, S. C.; Zhang, Q. H.; Bai, Y.; Li, M.; Yuan, Y. F.; Wang, H. L.; Liu, X. Y.; Yuan, Y. X.; Zhu, N. et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 2019, 10, 73.

    Article  CAS  Google Scholar 

  12. Zhao, Q.; Zachman, M. J.; Al Sadat, W. I.; Zheng, J. X.; Kourkoutis, L. F.; Archer, L. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 2018, 4, eaau8131.

    Article  CAS  Google Scholar 

  13. Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R. Y.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564–7579.

    Article  CAS  Google Scholar 

  14. Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.

    Article  CAS  Google Scholar 

  15. VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.

    Article  CAS  Google Scholar 

  16. Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

    Article  CAS  Google Scholar 

  17. Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.

    Article  CAS  Google Scholar 

  18. Huang, Y.; Li, Z.; Pei, Z. X.; Liu, Z. X.; Li, H. F.; Zhu, M. S.; Fan, J.; Dai, Q. B.; Zhang, M. D.; Dai, L. M. et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 2018, 8, 1802288.

    Article  CAS  Google Scholar 

  19. Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

    Article  CAS  Google Scholar 

  20. Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

    Article  CAS  Google Scholar 

  21. Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo∥Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

    Article  CAS  Google Scholar 

  22. Jiang, X. C.; Xiang, N. P.; Wang, J. Q.; Zhao, Y. L.; Hou, L. X. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking. Carbohyd. Polym. 2017, 173, 701–706.

    Article  CAS  Google Scholar 

  23. Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.

    Article  CAS  Google Scholar 

  24. Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924.

    Article  CAS  Google Scholar 

  25. Koch, S.; Fill, A.; Birke, K. P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112.

    Article  CAS  Google Scholar 

  26. Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.

    Article  CAS  Google Scholar 

  27. Mo, F. N.; Li, H. F.; Pei, Z. X.; Liang, G. J.; Ma, L. T.; Yang, Q.; Wang, D. H.; Huang, Y.; Zhi, C. Y. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 2018, 63, 1077–1086.

    Article  CAS  Google Scholar 

  28. Chen, Z.; Hsu, P. C.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.

    Article  CAS  Google Scholar 

  29. Yang, Y.; Yu, D. D.; Wang, H.; Guo, L. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities. Adv. Mater. 2017, 29, 1703040.

    Article  CAS  Google Scholar 

  30. Feng, X. M.; Ai, X. P.; Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 2004, 6, 1021–1024.

    Article  CAS  Google Scholar 

  31. Yan, C. S.; Lv, C.; Wang, L. G.; Cui, W.; Zhang, L. Y.; Dinh, K. N.; Tan, H. T.; Wu, C.; Wu, T. P.; Ren, Y. et al. Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 2020, 142, 15295–15304.

    Article  CAS  Google Scholar 

  32. Nakato, T.; Furumi, Y.; Terao, N.; Okuhara, T. Reaction of layered vanadium phosphorus oxides, VOPO4·2H2O and VOHPO4·0.5H2O, with amines and formation of exfoliative intercalation compounds. J. Mater. Chem. 2000, 10, 737–743.

    Article  CAS  Google Scholar 

  33. Shi, H. Y.; Song, Y.; Qin, Z. M.; Li, C. C.; Guo, D.; Liu, X. X.; Sun, X. Q. Inhibiting VOPO4·xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem., Int. Ed. 2019, 58, 16057–16061.

    Article  CAS  Google Scholar 

  34. Li, Y. H.; Sun, H.; Cheng, X. P.; Zhang, Y. F.; Zhao, K. J. In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries. Nano Energy 2016, 27, 95–102.

    Article  CAS  Google Scholar 

  35. Kufian, M. Z.; Majid, S. R.; Arof, A. K. Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 2007, 13, 231–234.

    Article  CAS  Google Scholar 

  36. Peng, X.; Liu, H. L.; Yin, Q.; Wu, J. C.; Chen, P. Z.; Zhang, G. Z.; Liu, G. M.; Wu, C. Z.; Xie, Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 2016, 7, 11782.

    Article  CAS  Google Scholar 

  37. Wan, F.; Zhang, Y.; Zhang, L. L.; Liu, D. B.; Wang, C. D.; Song, L.; Niu, Z. Q.; Chen, J. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7062–7067.

    Article  CAS  Google Scholar 

  38. Wang, F. X.; Yu, F.; Wang, X. W.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wen, Z. B.; Wu, Y. P.; Huang, W. Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl. Mater. Inter. 2016, 8, 9022–9029.

    Article  CAS  Google Scholar 

  39. Wang, P. P.; Chen, Z.; Ji, Z. Y.; Feng, Y. P.; Wang, J. Q.; Liu, J.; Hu, M. M.; Wang, H.; Gan, W.; Huang, Y. A flexible aqueous Al ion rechargeable full battery. Chem. Eng. J. 2019, 373, 580–586.

    Article  CAS  Google Scholar 

  40. Holland, A.; Mckerracher, R. D.; Cruden, A.; Wills, R. G. A. An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 2018, 48, 243–250.

    Article  CAS  Google Scholar 

  41. Pan, W. D.; Wang, Y. F.; Zhang, Y. G.; Kwok, H. Y. H.; Wu, M. Y.; Zhao, X. L.; Leung, D. Y. C. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A 2019, 7, 17420–17425.

    Article  CAS  Google Scholar 

  42. Ji, X.; Chen, J.; Wang, F.; Sun, W.; Ruan, Y. J.; Miao, L.; Jiang, J. J.; Wang, C. S. Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 2018, 18, 6441–6448.

    Article  CAS  Google Scholar 

  43. Gu, S. C.; Wang, H. L.; Wu, C.; Bai, Y.; Li, H.; Wu, F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017, 6, 9–17.

    Article  Google Scholar 

  44. Gao, Y. N.; Yang, H. Y.; Wang, X. R.; Bai, Y.; Zhu, N.; Guo, S. N.; Suo, L. M.; Li, H.; Xu, H. J.; Wu, C. The compensation effect mechanism of Fe-Ni mixed prussian blue analogues in aqueous rechargeable aluminum-ion batteries. ChemSusChem 2020, 13, 732–740.

    Article  CAS  Google Scholar 

  45. Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.

    Article  CAS  Google Scholar 

  46. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    Article  CAS  Google Scholar 

  47. Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21805063), the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (No. 2018B030306022), the Economic, Trade and Information Commission of Shenzhen Municipality through the Graphene Manufacture Innovation Center (No. 201901161514), and Research Innovation Fund of Harbin Institute of Technology (No. HIT.NSRIF.2020063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang.

Electronic Supplementary Material

12274_2021_3356_MOESM1_ESM.pdf

Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, P., Ji, Z. et al. Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Res. 14, 4154–4162 (2021). https://doi.org/10.1007/s12274-021-3356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3356-5

Keywords

Navigation