Skip to main content
Log in

Low-temperature synthesis of Fe2(MoO4)3nanosheets: A cathode for sodium ion batteries with kinetics enhancement

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs), and offer some significant benefits such as cost reduction and a lower environmental impact; however, to compete with LIBs, further research is required to improve the performance of SIBs. In this study, an orthorhombic Na super ionic conductor structural Fe2(MoO4)3 nanosheet with amorphous-crystalline core-shell alignment was synthesized using a facile low-temperature water-vapor-assisted solid-state reaction and applied as a cathode material for SIBs. The obtained material has a well-defined three-dimensional stacking structure, and exhibits a high specific capacity of 87.8 mAh·g1 at a current density of 1 C = 91 mA·g1 after 1,000 cycles, which is due to the considerable contribution of extra surface-related reaction such as the pseudo-capacitive process. This material shows significantly improved cycling and rated behavior as well as enhanced performance under high- and low-temperature conditions, as compared to the same materials prepared by the conventional high-temperature solid-state reaction. This enhancement is explained by the unique morphology in combination with the improved kinetics of the electrochemical reaction due to its lower charge transfer resistance and higher sodium ion conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascón, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  2. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  CAS  Google Scholar 

  3. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  CAS  Google Scholar 

  4. Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

    Article  CAS  Google Scholar 

  5. Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M. I. Prospects in anode materials for sodium ion batteries—A review. Renew. Sust. Energ. Rev. 2020, 119, 109549.

    Article  CAS  Google Scholar 

  6. Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

    Article  CAS  Google Scholar 

  7. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.

    Article  CAS  Google Scholar 

  8. Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751.

    Article  CAS  Google Scholar 

  9. Dai, Z. F.; Mani, U.; Tan, H. T.; Yan, Q. Y. Advanced cathode materials for sodium-ion batteries: What determines our choices? Small Methods 2017, 1, 1700098.

    Article  CAS  Google Scholar 

  10. Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43, 185–204.

    Article  CAS  Google Scholar 

  11. Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electroncorrelated materials. Nat. Mater. 2013, 12, 74–80.

    Article  CAS  Google Scholar 

  12. Wang, Y.; Li, W.; Hu, G. R.; Peng, Z. D.; Cao, Y. B.; Gao, H. C.; Du, K.; Goodenough, J. B. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chem. Mater. 2019, 31, 5214–5223.

    Article  CAS  Google Scholar 

  13. Yang, L. F.; Li, X.; Ma, X. T.; Xiong, S.; Liu, P.; Tang, Y. Z.; Cheng, S.; Hu, Y. Y.; Liu, M. L.; Chen, H. L. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: A study on P2-Nax(LiyMn1-y)O2 compounds. J. Power Sources 2018, 381, 171–180.

    Article  CAS  Google Scholar 

  14. Susanto, D.; Cho, M. K.; Ali, G.; Kim, J. Y.; Chang, H. J.; Kim, H. S.; Nam, K. W.; Chung, K. Y. Anionic redox activity as a key factor in the performance degradation of NaFeO2 cathodes for sodium ion batteries. Chem. Mater. 2019, 31, 3644–3651.

    Article  CAS  Google Scholar 

  15. Qi, S. H.; Wu, D. X.; Dong, Y.; Liao, J. Q.; Foster, C. W.; O’Dwyer, C.; Feng, Y. Z.; Liu, C. T.; Ma, J. M. Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 2019, 370, 185–207.

    Article  CAS  Google Scholar 

  16. Bucher, N.; Hartung, S.; Franklin, J. B.; Wise, A. M.; Lim, L. Y.; Chen, H. Y.; Weker, J. N.; Toney, M. F.; Srinivasan, M. P2-Na,CoyMn1-yO2 (y = 0, 0. 1) as cathode materials in sodium-ion batteries—Effects of doping and morphology to enhance cycling stability. Chem. Mater. 2016, 28, 2041–2051.

    Article  CAS  Google Scholar 

  17. Sun, X.; Ji, X. Y.; Xu, H. Y.; Zhang, C. Y.; Shao, Y.; Zang, Y.; Chen, C. H. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochim. Acta 2016, 208, 142–147.

    Article  CAS  Google Scholar 

  18. Pang, W. L.; Zhang, X. H.; Guo, J. Z.; Li, J. Y.; Yan, X.; Hou, B. H.; Guan, H. Y.; Wu, X. L. P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sources 2017, 356, 80–88.

    Article  CAS  Google Scholar 

  19. Essehli, R.; Yahia, H. B.; Maher, K.; Sougrati, M. T.; Abouimrane, A.; Park, J. B.; Sun, Y. K.; Al-Maadeed, M. A.; Belharouak, I. Unveiling the sodium intercalation properties in Na1860.14Fe3(PO4)3. J. Power Sources 2016, 324, 657–664.

    Article  CAS  Google Scholar 

  20. Zhu, X. B.; Mochiku, T.; Fujii, H.; Tang, K. B.; Hu, Y. X.; Huang, Z.; Luo, B.; Ozawa, K.; Wang, L. Z. A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Res. 2018, 11, 6197–6205.

    Article  CAS  Google Scholar 

  21. Dimov, N.; Nishimura, A.; Chihara, K.; Kitajou, A.; Gocheva, I. D.; Okada, S. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium-ion and sodium-ion batteries. Electrochim. Acta 2013, 110, 214–220.

    Article  CAS  Google Scholar 

  22. Zhou, Y. N.; Sina, M.; Pereira, N.; Yu, X. Q.; Amatucci, G. G.; Yang, X. Q.; Cosandey, F.; Nam, K. W. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 696–703.

    Article  CAS  Google Scholar 

  23. Hwang, I.; Jung, S. K.; Jeong, E. S.; Kim, H.; Cho, S. P.; Ku, K.; Kim, H.; Yoon, W. S.; Kang, K. NaF-FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Res. 2017, 10, 4388–4397.

    Article  CAS  Google Scholar 

  24. Xie, B. X.; Zuo, P. J.; Wang, L. G.; Wang, J. J.; Huo, H.; He, M. X.; Shu, J.; Li, H. F.; Lou, S. F.; Yin, G. P. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 2019, 61, 201–210.

    Article  CAS  Google Scholar 

  25. Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

    Article  CAS  Google Scholar 

  26. Tang, X.; Liu, H.; Su, D. W.; Notten, P. H. L.; Wang, G. X. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990.

    Article  CAS  Google Scholar 

  27. Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156–160.

    Article  CAS  Google Scholar 

  28. Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

    Article  CAS  Google Scholar 

  29. Jian, Z. L.; Yuan, C. C.; Han, W. Z.; Lu, X.; Gu, L.; Xi, X. K.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. F. et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 2014, 24, 4265–4272.

    Article  CAS  Google Scholar 

  30. Subramanian, Y.; Oh, W.; Choi, W.; Lee, H.; Jeong, M.; Thangavel, R.; Yoon, W. S. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 2021, 403, 126291.

    CAS  Google Scholar 

  31. Park, S.; Song, J. J.; Kim, S.; Sambandam, B.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Kim, J. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Res. 2019, 12, 911–917.

    Article  CAS  Google Scholar 

  32. Chen, M. Z.; Hua, W. B.; Xiao, J.; Cortie, D.; Guo, X. D.; Wang, E. H.; Gu, Q. F.; Hu, Z.; Indris, S.; Wang, X. L. et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 2449–2456.

    Article  CAS  Google Scholar 

  33. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  CAS  Google Scholar 

  34. Fang, Y. J.; Chen, Z. X.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116.

    Article  CAS  Google Scholar 

  35. Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q. et al. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe2(MoO4)3. Sci. Rep. 2015, 5, 8810.

    Article  CAS  Google Scholar 

  36. Heo, J. W.; Hyoung, J.; Hong, S. T. Unveiling the intercalation mechanism in Fe2(MoO4)3 as an electrode material for Na-ion batteries by structural determination. Inorg. Chem. 2018, 57, 11901–11908.

    Article  CAS  Google Scholar 

  37. Nguyen, V.; Liu, Y. L.; Hakim, S. A.; Yang, S.; Radwan, A. R.; Chen, W. Synthesis and electrochemical performance of Fe2(MoO4)3/RGO nanocomposite cathode material for sodium-ion batteries. Int. J. Electrochem. Sci. 2015, 10, 10565–10575.

    CAS  Google Scholar 

  38. Nguyen, V.; Liu, Y. L.; Li, Y.; Hakim, S. A.; Yang, X.; Chen, W. Synthesis and electrochemical performance of Fe2(MoO4)3/carbon nanotubes nanocomposite cathode material for sodium-ion battery. ECS J. Solid State Sci. Technol. 2015, 4, M25–M29.

    Article  CAS  Google Scholar 

  39. Nguyen, V.; Liu, Y.; Yang, X.; Chen, W. S. Fe2(MoO4)3/nanosilver composite as a cathode for sodium-ion batteries. ECS Electrochem. Lett. 2015, 4, A29–A32.

    Article  CAS  Google Scholar 

  40. Niu, Y. B.; Xu, M. W. Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance. J. Alloys Compd. 2016, 674, 392–398.

    Article  CAS  Google Scholar 

  41. Sheng, J. Z.; Zang, H.; Tang, C. J.; An, Q. Y.; Wei, Q. L.; Zhang, G B.; Chen, L. N.; Peng, C.; Mai, L. Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. Nano Energy 2016, 24, 130–138.

    Article  CAS  Google Scholar 

  42. Nguyen, V. T.; Liu, Y. L.; Hakim, S. A.; Radwan, A. R.; Wei, B.; Chen, W. Synthesis and electrochemical properties of doped Tin Fe2(MoO4)3 as cathode material for sodium-ion batteries. Int. J. Electrochem. Sci. 2017, 12, 3088–3098.

    Article  CAS  Google Scholar 

  43. Zhou, S. L.; Barim, G.; Morgan, B. J.; Melot, B. C.; Brutchey, R. L. Influence of rotational distortions on Li+- and Na+-intercalation in anti-NASICON Fe2(MoO4)3. Chem. Mater. 2016, 28, 4492–4500.

    Article  CAS  Google Scholar 

  44. Senthilkumar, B.; Selvan, R. K.; Barpanda, P. Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3. Electrochem. Commun. 2020, 110, 106617.

    Article  CAS  Google Scholar 

  45. Yadava, Y. P.; Singh, R. A. Electrical properties of iron (III) molybdate. J. Mater. Sci. 1987, 22, 2965–2968.

    Article  CAS  Google Scholar 

  46. Chen, R. J.; Zhao, T. L.; Zhang, X. X.; Li, L.; Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz. 2016, 1, 423–444.

    Article  CAS  Google Scholar 

  47. Liu, X. H.; Lai, W. H.; Chou, S. L. The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Mater. Chem. Front. 2020, 4, 1289–1303.

    Article  CAS  Google Scholar 

  48. Huu, H. T.; Im, W. B. Facile green synthesis of pseudocapacitance-contributed ultrahigh capacity Fe2(MoO4)3 as an anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 35152–35163.

    Article  CAS  Google Scholar 

  49. Kim, S. W.; Hasegawa, T.; Watanabe, M.; Muto, M.; Terashima, T.; Abe, Y.; Kaneko, T.; Toda, A.; Ishigaki, T.; Uematsu, K. et al. Nanophosphors synthesized by the water-assisted solid-state reaction (WASSR) method: Luminescence properties and reaction mechanism of the WASSR method. Appl. Spectros. Rev. 2018, 53, 177–194.

    Article  Google Scholar 

  50. Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); Report LAUR 86-748, Los Alamos National Laboratory: Los Alamos, NM, 1994.

    Google Scholar 

  51. Vu, N. H.; Le, H. T. T.; Hoang, V. H.; Dao, V. D.; Huu, H. T.; Jun, Y. S.; Im, W. B. Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries. J. Alloys Compd. 2020, 851, 156881.

    Article  CAS  Google Scholar 

  52. Tyagi, A. K.; Achary, S. N.; Mathews, M. D. Phase transition and negative thermal expansion in A2(MoO4)3 system (A= Fe3+, Cr3+, and Al3+). J. Alloys Compd. 2002, 339, 207–210.

    Article  CAS  Google Scholar 

  53. Lin, S. K. Correlation of entropy with similarity and symmetry. J. Chem. Inf. Comput. Sci. 1996, 36, 367–376.

    Article  CAS  Google Scholar 

  54. Evans, S. Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis. Surf. Int. Anal. 1997, 25, 924–930.

    Article  CAS  Google Scholar 

  55. Taylor, C. E.; Garvey, S. D.; Pemberton, J. E. Carbon contamination at silver surfaces: Surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Anal. Chem. 1996, 68, 2401–2408.

    Article  CAS  Google Scholar 

  56. Mao, J. F.; Zhou, T. F.; Zheng, Y.; Gao, H.; Liu, H. K.; Guo, Z. P. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 2018, 6, 3284–3303.

    Article  CAS  Google Scholar 

  57. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

    Article  CAS  Google Scholar 

  58. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  59. Liu, W. J.; Shao, D.; Luo, G. E.; Gao, Q. Z.; Yan, G. J.; He, J. R.; Chen, D. Y.; Yu, X. Y.; Fang, Y. P. Mesoporous spinel Li4Ti5O12 nanoparticles for high rate lithium-ion battery anodes. Electrochim. Acta 2014, 133, 578–582.

    Article  CAS  Google Scholar 

  60. Chen, W. N.; Jiang, H.; Hu, Y. J.; Dai, Y. H.; Li, C. Z. Mesoporous single crystals Li4Ti5O12 grown on rGO as high-rate anode materials for lithium-ion batteries. Chem. Commun. 2014, 50, 8856–8859.

    Article  CAS  Google Scholar 

  61. Jiang, Y. Z.; Zhang, D.; Li, Y.; Yuan, T. Z.; Bahlawane, N.; Liang, C.; Sun, W. P.; Lu, Y. H.; Yan, M. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 2014, 4, 23–30.

    Article  CAS  Google Scholar 

  62. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

    Article  CAS  Google Scholar 

  63. Wei, Q. L.; Liu, J.; Feng, W.; Sheng, J. Z.; Tian, X. C.; He, L.; An, Q. Y.; Mai, L. Q. Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 2015, 3, 8070–8075.

    Article  CAS  Google Scholar 

  64. Ngo, D. T.; Le, H. T. T.; Kim, C.; Lee, J. Y.; Fisher, J. G.; Kim, I. D.; Park, C. J. Mass-scalable synthesis of 3D porous germanium-carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 2015, 8, 3577–3588.

    Article  CAS  Google Scholar 

  65. Yuan, F. W.; Yang, H. J.; Tuan, H. Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 2012, 6, 9932–9942.

    Article  CAS  Google Scholar 

  66. He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C. Z.; Cao, X.; Liu, H. D.; Stan, M. C.; Liu, H. D.; Gallash, T. et al. Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 2016, 27, 602–610.

    Article  CAS  Google Scholar 

  67. Crank, J. The Mathematics of Diffusion; Oxford University Press, Oxford, 1979.

    Google Scholar 

  68. Wang, Q. Y.; Zhao, B. D.; Zhang, S.; Gao, X. H.; Deng, C. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. J. Mater. Chem. A 2015, 3, 7732–7740.

    Article  CAS  Google Scholar 

  69. Zhu, Y. J.; Wang, C. S. Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 2010, 114, 2830–2841.

    Article  CAS  Google Scholar 

  70. Bökenfeld, N.; Balducci, A. Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. J. Solid State Electrochem. 2014, 18, 959–964.

    Article  CAS  Google Scholar 

  71. Choi, Y. M.; Pyun, S. I.; Bae, J. S.; Moon, S. I. Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J. Power Sources 1995, 56, 25–30.

    Article  CAS  Google Scholar 

  72. Hong, J. S.; Selman, J. R. Relationship between calorimetric and structural characteristics of lithium-ion cells II. determination of Li transport properties. J. Electrochem. Soc. 2000, 147, 3190.

    Article  CAS  Google Scholar 

  73. Kim, Y. J.; Kim, H.; Kim, B.; Ahn, D.; Lee, J. G.; Kim, T. J.; Son, D.; Cho, J.; Kim, Y. W.; Park, B. Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating. Chem. Mater. 2003, 15, 1505–1511.

    Article  CAS  Google Scholar 

  74. Shi, L.; Zhao, T. S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 2017, 5, 3735–3758.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B3011967). This work was supported by the Engineering Research Center through National Research Foundation of Korea (NRF), funded by the Korean Government (MSIT) (NRF-2018R1A5A1025224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Won Lee or Won Bin Im.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huu, H.T., Viswanath, N.S.M., Vu, N.H. et al. Low-temperature synthesis of Fe2(MoO4)3nanosheets: A cathode for sodium ion batteries with kinetics enhancement. Nano Res. 14, 3977–3987 (2021). https://doi.org/10.1007/s12274-021-3323-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3323-1

Keywords

Navigation