Skip to main content
Log in

NaF–FeF2 nanocomposite: New type of Na-ion battery cathode material

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Na-ion batteries (NIBs) are considered one of the most attractive alternatives for Li-ion batteries (LIBs) because of the natural abundance of Na and the similarities between the NIB technology and the well-established LIB technology. However, the discovery of high-performance electrode materials remains a key factor in the success of NIBs. Herein, we propose a new type of cathode material for NIBs based on a nanocomposite of an alkali metal fluoride (NaF) and a transition metal fluoride (FeF2). Although neither of these components is electrochemically active with Na, the nanoscale mixture of the two can deliver a reversible capacity of ∼125 mAh/g in the voltage range of 1.2–4.8 V vs. Na/Na+ via an Fe2+/Fe3+ redox couple. X-ray absorption spectroscopy reveals that the reversible Na storage is aided by the F–ions due to the decomposition of NaF, which are absorbed on the surface of FeF2, promoting the redox reaction of Fe and triggering the gradual transformation of the mother structure (FeF2) into a new (FeF3-like) host structure for the Na ions. This unique Na-ion storage phenomenon, which is reported for the first time, will introduce an avenue for designing novel cathode materials for NIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shakoor, R. A.; Seo, D.-H.; Kim, H.; Park, Y.-U.; Kim, J.; Kim, S.-W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535–20541.

    Article  Google Scholar 

  2. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  3. Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  4. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  5. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  6. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  7. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  8. Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.

    Article  Google Scholar 

  9. Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Study on the reversible electrode reaction of Na1–xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 2012, 51, 6211–6220.

    Article  Google Scholar 

  10. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

    Article  Google Scholar 

  11. Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288–5296.

    Article  Google Scholar 

  12. Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

    Article  Google Scholar 

  13. Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kim, H.; Kim, J.; Lim, H.-D.; Yoon, W.-S. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 2013, 25, 3614–3622.

    Article  Google Scholar 

  14. Ha, K. H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F. et al. Na4–αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater. 2013, 3, 770–776.

    Article  Google Scholar 

  15. Barpanda, P.; Ye, T.; Nishimura, S.-I.; Chung, S.-C.; Yamada, Y.; Okubo, M.; Zhou, H. S.; Yamada, A. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem. Commun. 2012, 24, 116–119.

    Article  Google Scholar 

  16. Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

    Article  Google Scholar 

  17. Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 2010, 22, 4126–4128.

    Article  Google Scholar 

  18. Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Crystal structure and electrochemical properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater. 2010, 22, 1059–1070.

    Article  Google Scholar 

  19. Kim, S.-W.; Seo, D.-H.; Kim, H.; Park, K.-Y.; Kang, K. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. Phys. Chem. Chem. Phys. 2012, 14, 3299–3303.

    Article  Google Scholar 

  20. Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603–4614.

    Article  Google Scholar 

  21. Park, Y.-U.; Seo, D.-H.; Kwon, H.-S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.-I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878.

    Article  Google Scholar 

  22. Recham, N.; Chotard, J.-N.; Dupont, L.; Djellab, K.; Armand, M.; Tarascon, J.-M. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 2009, 156, A993–A999.

    Article  Google Scholar 

  23. Barpanda, P.; Chotard, J.-N.; Recham, N.; Delacourt, C.; Ati, M.; Dupont, L.; Armand, M.; Tarascon, J.-M. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg. Chem. 2010, 49, 7401–7413.

    Article  Google Scholar 

  24. Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. Ionothermal synthesis of high-voltage Alluaudite Na2+2xFe2–x(SO4)3 sodium insertion compound: Structural, electronic, and magnetic insights. ACS Appl. Mater. Interfaces 2016, 8, 6982–6991.

    Article  Google Scholar 

  25. Wei, S. H.; Mortemard de Boisse, B.; Oyama, G.; Nishimura, S. I.; Yamada, A. Synthesis and electrochemistry of Na2.5(Fe1−yMny)1.75(SO4)3 solid solutions for Na-ion batteries. ChemElectroChem 2016, 3, 209–213.

    Article  Google Scholar 

  26. Ma, D.-L.; Wang, H.-G.; Li, Y.; Xu, D.; Yuan, S.; Huang, X.-L.; Zhang, X.-B.; Zhang, Y. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy 2014, 10, 295–304.

    Article  Google Scholar 

  27. Nishijima, M.; Gocheva, I. D.; Okada, S.; Doi, T.; Yamaki, J.-I.; Nishida, T. Cathode properties of metal trifluorides in Li and Na secondary batteries. J. Power Sources 2009, 190, 558–562.

    Article  Google Scholar 

  28. He, K.; Zhou, Y. N.; Gao, P.; Wang, L. P.; Pereira, N.; Amatucci, G. G.; Nam, K.-W.; Yang, X.-Q.; Zhu, Y. M.; Wang, F. et al. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. ACS Nano 2014, 8, 7251–7259.

    Article  Google Scholar 

  29. Kim, S.-W.; Nam, K.-W.; Seo, D.-H.; Hong, J.; Kim, H.; Gwon, H.; Kang, K. Energy storage in composites of a redox couple host and a lithium ion host. Nano Today 2012, 7, 168–173.

    Article  Google Scholar 

  30. Jung, S.-K.; Kim, H.; Cho, M. G.; Cho, S.-P.; Lee, B.; Kim, H.; Park, Y.-U.; Hong, J.; Park, K.-Y.; Yoon, G. et al. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy 2017, 2, 16208.

    Article  Google Scholar 

  31. Dimov, N.; Kitajou, A.; Hori, H.; Kobayashi, E.; Okada, S. Electrochemical splitting of LiF: A new approach to lithium-ion battery materials. ECS Trans. 2014, 58, 87–99.

    Article  Google Scholar 

  32. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacin, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.

    Article  Google Scholar 

  33. Shao, Y. J.; Yue, H. J.; Qiao, R. M.; Hu, J. Q.; Zhong, G. M.; Wu, S. Q.; McDonald, M. J.; Gong, Z. L.; Zhu, Z. Z.; Yang, W. L. et al. Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries. Chem. Mater. 2016, 28, 1026–1033.

    Article  Google Scholar 

  34. Hudson, E.; Moler, E.; Zheng, Y.; Kellar, S.; Heimann, P.; Hussain, Z.; Shirley, D. Near-edge sodium and fluorine K-shell photoabsorption of alkali halides. Phys. Rev. B 1994, 49, 3701–3708.

    Article  Google Scholar 

  35. Nakai, S.-I.; Ohashi, M.; Mitsuishi, T.; Maezawa, H.; Oizumi, H.; Fujikawa, T. F–K XANES studies of alkali fluorides. J. Phys. Soc. Jpn. 1986, 55, 2436–2442.

    Article  Google Scholar 

  36. Krasnikov, S. A.; Vinogradov, A. S.; Preobrajenski, A. B.; Gridneva, L. K.; Molodtsov, S. L.; Laubschat, C.; Szargan, R. Electronic structure of FeF2 and FeF3 studied by X-ray absorption and fluorescence spectroscopy. Phys. Scr. 2005, 2005, 1074.

    Article  Google Scholar 

  37. Kuzmin, A.; Parent, P. Focusing and superfocusing effects in X-ray absorption fine structure at the iron K edge in FeF3. J. Phys.: Condens. Matter 1994, 6, 4395.

    Google Scholar 

  38. Zhang, W.; Duchesne, P. N.; Gong, Z.-L.; Wu, S.-Q.; Ma, L.; Jiang, Z.; Zhang, S.; Zhang, P.; Mi, J.-X.; Yang, Y. In situ electrochemical XAFS studies on an iron fluoride highcapacity cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2013, 117, 11498–11505.

    Article  Google Scholar 

  39. Wang, F.; Kim, S.-W.; Seo, D.-H.; Kang, K.; Wang, L. P.; Su, D.; Vajo, J. J.; Wang, J.; Graetz, J. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat. Commun. 2015, 6, 6668.

    Article  Google Scholar 

  40. Li, L. S.; Jacobs, R.; Gao, P.; Gan, L. Y.; Wang, F.; Morgan, D.; Jin, S. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848.

    Article  Google Scholar 

  41. Cosandey, F.; Al-Sharab, J. F.; Badway, F.; Amatucci, G. G.; Stadelmann, P. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc. Microanal. 2007, 13, 87–95.

    Article  Google Scholar 

  42. Van Aken, P. A.; Liebscher, B.; Styrsa, V. J. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 1998, 25, 323–327.

    Article  Google Scholar 

  43. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding Center of Samsung Electronics (No. SRFC-TA1403-03). This work was also supported by the World Premier Materials grant funded by the Korea government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisuk Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I., Jung, SK., Jeong, ES. et al. NaF–FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Res. 10, 4388–4397 (2017). https://doi.org/10.1007/s12274-017-1538-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1538-y

Keywords

Navigation