Skip to main content
Log in

Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We demonstrated a simple, one-step route for assembling Au nanoparticles (NPs) on N-containing polymer nanospheres through in situ reductive growth process.Using resorcinol–melamine–formaldehyde resin nanospheres (RMF NSs) as a functional platform, neither a surfactant/ligand nor pretreatment is needed in the synthetic process of Au@RMF NSs hybrid nanostructure. When used as a catalytic media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol, the Au@RMF NSs hybrid nanostructures show significantly enhanced catalytic performance than the ever reported Au-based catalyst. The absorption modal of 4-NP on this nanostructure is also discussed by theoretical calculations using density functional theory. The calculated results verify the preferential capture of 4-NP by the N-containing functionalities of RMF NSs, which is critical step for the acceleration of Au-based catalytic reaction kinetics, leading to the remarkable improved catalytic behavior. The superior features of RMF NSs as well as minimal economical cost compared with other polymer and non-polymer will promote further interest in the field of N-containing catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) One-Pot Green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248:394–400

    Article  Google Scholar 

  2. Corma A, Serna P, Concepcion P, Calvino JJ (2008) Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J Am Chem Soc 130:8748–8753

    Article  Google Scholar 

  3. Wunder S, Polzer FL, Mei Y, Ballauff YM (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820

    Article  Google Scholar 

  4. Zhang YW, Liu S, Lu WB, Wang L, Tian JQ, Sun XP (2011) In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-Nitrophenol. Catal Sci Technol 1:1142–1144

    Article  Google Scholar 

  5. Yuan CH, Luo WA, Zhong LN, Deng HJ, Liu J, Xu YT, Dai LZ (2011) Gold@polymer nanostructures with tunable permeability shells for selective catalysis. Angew Chem Int Ed 50:3515–3519

    Article  Google Scholar 

  6. Lv WP, Wang Y, Feng WQ, Qi JJ, Zhang GL, Zhang FB, Fan XB (2011) Robust and smart gold nanoparticles: one-step synthesis, tunable optical property, and switchable catalytic activity. J Mater Chem 21:6173–6178

    Article  Google Scholar 

  7. Sawada KC, Sakai SJ, Taya MS (2014) Polyacrylonitrile-based electrospun nanofibers carrying gold nanoparticles in situ formed by photochemical assembly. J Mater Sci 49:4595–46008. doi:10.1007/s10853-014-8161-z

    Article  Google Scholar 

  8. Zhang CX, Li C, Chen YY, Zhang Y (2014) Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers. J Mater Sci 49:6872–6882. doi:10.1007/s10853-014-8389-7

    Article  Google Scholar 

  9. Wang XX, Ji HF, Zhang X, Zhang H, Yang XL (2010) Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor. J Mater Sci 45:3981–3989. doi:10.1007/s10853-010-4470-z

    Article  Google Scholar 

  10. Yan W, Chen B, Mahurin SM, Dai S, Overbury SH (2004) Brookite-supported highly stable gold catalytic system for CO oxidation. Chem Commun 17:1918–1919

    Article  Google Scholar 

  11. Ma Z, Liang C, Overbury S, Dai S (2007) Gold nanoparticles on electroless-deposition-derived MnOx/C: synthesis, characterization, and catalytic CO oxidation. J Catal 252:119–126

    Article  Google Scholar 

  12. Ma Z, Overbury SH, Dai S (2007) Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives. J Mol Catal A: Chem 273:186–197

    Article  Google Scholar 

  13. Zhang LF, Aboagye A, Kelkar A, Lai CL, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  14. Fang Y, Wang E (2013) Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 5:1843–1848

    Article  Google Scholar 

  15. Liang M, Su RX, Qi W, Yu YJ, Wang LB, He ZM (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639–1647. doi:10.1007/s10853-013-7847-y

    Article  Google Scholar 

  16. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 44:4580–4598

    Article  Google Scholar 

  17. Liu X, Cheng F, Liu Y, Liu HJ, Chen Y (2010) Preparation and characterization of novel thermoresponsive gold nanoparticles and their responsive catalysis properties. J Mater Chem 20:360–368

    Article  Google Scholar 

  18. Seo E, Kim J, Hong Y, Kim YS, Lee D, Kim BS (2013) Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction. J Phys Chem C 117:11686–11693

    Article  Google Scholar 

  19. Wang ML, Jiang TT, Lu Y, Liu HJ, Chen Y (2013) Gold nanoparticles immobilized in hyperbranched polyethylenimine modified polyacrylonitrile fiber as highly efficient and recyclable heterogeneous catalysts for the reduction of 4-nitrophenol. J Mater Chem A 1:5923–5933

    Article  Google Scholar 

  20. Wang X, Fu J, Wang M, Wang Y, Chen Z, Zhang J, Chen J, Xu Q (2014) Facile synthesis of au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49:5056–5065. doi:10.1007/s10853-014-8212-5

    Article  Google Scholar 

  21. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233

    Article  Google Scholar 

  22. Zhang J, Chen G, Chaker M, Rosei F, Ma D (2013) Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl Catal B-Environ 132–133:107–115

    Article  Google Scholar 

  23. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) In Situ assembly of well-dispersed Ag Nanoparticles (Ag NPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363

    Article  Google Scholar 

  24. Su F, Tian Z, Poh CK, Wang Z, Lim SH, Liu Z, Lin J (2010) Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem Mater 22:832–839

    Article  Google Scholar 

  25. Kong XK, Sun ZY, Chen M, Chen CL, Chen QW (2013) Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ Sci 6:3260–3266

    Article  Google Scholar 

  26. Liang J, Du X, Gibson C, Du XW, Qiao SZ (2013) N-Doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 25:6226–6231

    Article  Google Scholar 

  27. Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun 14:1468–1470

    Article  Google Scholar 

  28. Xie X, Long J, Xu J, Chen L, Wang Y, Zhang Z, Wang X (2012) Nitrogen-doped graphene stabilized gold nanoparticles for aerobic selective oxidation of benzylic alcohols. RSC Adv 2:12438

    Article  Google Scholar 

  29. Guo S, Zhai J, Fang Y, Dong S, Wang E (2008) Nanoelectrocatalyst based on high-density Au/Pt Hybrid nanoparticles supported on a silica nanosphere. Chem Asian J 3:1156–1162

    Article  Google Scholar 

  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 14:B864–B871

    Article  Google Scholar 

  31. Perdew JP, Wang Y (1991) Phys Rev B 334:13244

    Google Scholar 

  32. Zhang J, Guo S, Wei J, Xu Q, Yan W, Fu J, Wang S, Cao M, Chen Z (2013) High-efficiency encapsulation of Pt nanoparticles into the channel of carbon nanotubes as an enhanced electrocatalyst for methanol oxidation. Chem Eur J 19:16087–16092

    Article  Google Scholar 

  33. Mohamed MM, Al Sharif MS (2013) Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates. Appl Catal B 142:432–441

    Article  Google Scholar 

  34. Ma FW, Zhao H, Sun LP, Li Q, Huo LH, Xia T, Gao S, Pang GS, Shi Z, Feng SH (2012) A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. J Mater Chem 22:13464–13468

    Article  Google Scholar 

  35. Zhou HH, Xu S, Su HP, Wang M, Qiao WM, Ling LC, Long DH (2013) Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres. Chem Commun 49:3763–3765

    Article  Google Scholar 

  36. Park KY, Jang JH, Hong JE, Kwon YU (2012) Mesoporous thin films of nitrogen-doped carbon with electrocatalytic properties. J Phys Chem C 116:16848–16853

    Article  Google Scholar 

  37. Lee WH, Lee JG, Reucroft PJ (2001) XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2 + N2). Appl Surf Sci 171:136–142

    Article  Google Scholar 

  38. Lin H, Kai T, Hua DY, Ma Z, Zhou SH (2013) Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18:12609–12620

    Article  Google Scholar 

  39. Fu JW, Wang MH, Zhang C, Xu Q, Huang XB, Tang XZ (2011) Controlled fabrication of noble metal nanoparticles loaded on the surfaces of cyclotriphosphazene-containing polymer nanotubes. J Mater Sci 47:1985–1991. doi:10.1007/s10853-011-5994-6

    Article  Google Scholar 

  40. Zeng T, Zhang XL, Wang SH, Ma YR, Niu HY, Cai YQ (2013) A double-shelled yolk-like structure as an ideal magnetic support of tiny gold nanoparticles for nitrophenol reduction. J Mater Chem A 1:11641–11647

    Article  Google Scholar 

  41. Tang SC, Vongehr S, Meng XK (2010) Controllable incorporation of Ag and Ag–Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J Mater Chem 20:5436–5445

    Article  Google Scholar 

  42. Zhang ZY, Shao CL, Sun YY, Mu JB, Zhang MY, Zhang P, Guo ZC, Liang PP, Wang CH, Liu YC (2012) Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. J Mater Chem 22:1387–1395

    Article  Google Scholar 

  43. Tian J, Liu GN, Guan C, Zhao HY (2013) Amphiphilic gold nanoparticles formed at a liquid-liquid interface and fabrication of hybrid nanocapsules based on interfacial uv photodimerization. Polym Chem 4:1913–1920

    Article  Google Scholar 

  44. Shin HS, Huh S (2012) Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes. ACS Appl Mater Interfaces 4:6324–6331

    Article  Google Scholar 

  45. Jiang HL, Akita T, Ishida T, Haruta M, Xu Q (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1306

    Article  Google Scholar 

  46. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430

    Article  Google Scholar 

  47. Guan BY, Wang X, Xiao Y, Liu YL, Huo QS (2013) A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites. Nanoscale 5:2469–2475

    Article  Google Scholar 

  48. Agrawal G, Schürings MP, Van Rijn P, Pich A (2013) Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process. J Mater Chem A 1:13244–13251

    Article  Google Scholar 

  49. Vix Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43:1293–1302

    Article  Google Scholar 

  50. Choi Y, Bae HS, Seo E, Jang S, Park KH, Kim BS (2011) Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J Mater Chem 21:15431–15436

    Article  Google Scholar 

  51. Lu Y, Mei Y, Schrinner M, Ballauff M, Moller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681

    Article  Google Scholar 

  52. Amirfakhri SJ, Binny D, Meunier JL, Berk D (2014) Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution. J Power Sources 257:356–363

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21101141 and 51202223), Program for New Century Excellent Talents in Universities (NCET), the Open Project Foundation of State Key Laboratory of Inorganic Synthesis and Preparation Chemistry of Jilin University (2012-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianan Zhang or Qun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, J., Yuan, P. et al. Au nanoparticle decorated N-containing polymer spheres: additive-free synthesis and remarkable catalytic behavior for reduction of 4-nitrophenol. J Mater Sci 50, 1323–1332 (2015). https://doi.org/10.1007/s10853-014-8692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8692-3

Keywords

Navigation