Skip to main content
Log in

The effect of the dopant’s reactivity for high-performance 2D MoS2 thin-film transistor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are many studies on the solution-processed thin-film transistor (TFT) using transition metal dichalcogenide (TMD) materials. However, it is hard to control the electrical property of chemically exfoliated TMD materials compared to the chemical vapor deposition TMD. An investigation into the electrical modulation behavior of exfoliated two-dimensional (2D) material is important to fabricate well-modulated electronic devices via solution processing. Here, we report the effects of reactivity of organic dopants on MoS2 and investigate how the chemical doping behavior influences the electrical properties of MoS2. The band state of dopants, which is related to the electron-withdrawing and donating behavior of chemical dopant, provides a proportional shift in the threshold voltages (Vth) of their field-effect transistors (FETs). However, on/off current ratio (Ion/Ioff) and mobility (µ) are strongly influenced by the defect density depending on the reactivity of doping reaction, rather than the band state of organic dopants. Through the in-depth study on the doping reaction, we fabricate a FET and a TFT, having high mobility and a relatively high on/off ratio (104) using a solution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7 699–712.

    CAS  Google Scholar 

  2. Choi, M.; Park, Y. J.; Sharma, B. K.; Bae, S. R.; Kim, S. Y.; Ahn, J. H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4 eaas8721.

    Google Scholar 

  3. Lyu, H. M.; Liu, X.; Rogers, N.; Gilja, V.; Kuzum, D. Graphene neural interfaces for artifact free optogenetics. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016, pp 4204–4207.

  4. Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5 eaax8801.

    CAS  Google Scholar 

  5. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1 16052.

    CAS  Google Scholar 

  6. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5 263–275.

    Google Scholar 

  7. Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6 10033–10039.

    CAS  Google Scholar 

  8. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13 100–105.

    CAS  Google Scholar 

  9. Cai, X. K.; Luo, Y. T.; Liu, B. L.; Cheng, H. M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47 6224–6266.

    CAS  Google Scholar 

  10. Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z. X.; Abramovic, I.; Vecera, P.; Halik, M. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9 6018–6030.

    CAS  Google Scholar 

  11. Stergiou, A.; Tagmatarchis, N. Molecular functionalization of two-dimensional MoS2 nanosheets. Chem. —Eur. J. 2018, 24 18246–18257.

    CAS  Google Scholar 

  12. Menanteau, T.; Dias, M.; Levillain, E.; Downard, A. J.; Breton, T. Electrografting via diazonium chemistry: The key role of the aryl substituent in the layer growth mechanism. J. Phys. Chem. C 2016, 120 4423–4429.

    CAS  Google Scholar 

  13. Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3 1011.

    Google Scholar 

  14. Bhojane, J. M.; Sarode, S. A.; Nagarkar, J. M. Aryl diazonium salt and thioacetamide: A catalyst free, efficient blend of an inexpensive arylating agent with “S” surrogate for sulphide synthesis. RSC Adv. 2016, 6 90046–90050.

    CAS  Google Scholar 

  15. Lee, H.; Bak, S.; An, S. J.; Kim, J. H.; Yun, E.; Kim, M.; Seo, S.; Jeong, M. S.; Lee, H. Highly efficient thin-film transistor via cross-linking of 1t edge functional 2H molybdenum disulfides. ACS Nano 2017, 11 12832–12839.

    CAS  Google Scholar 

  16. Assresahegn, B. D.; Brousse, T.; Bélanger, D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 2015, 92 362–381.

    CAS  Google Scholar 

  17. Collins, G.; Fleming, P.; O’Dwyer, C.; Morris, M. A.; Holmes, J. D. Organic functionalization of germanium nanowires using arenediazonium salts. Chem. Mater. 2011, 23 1883–1891.

    CAS  Google Scholar 

  18. Voiry, D.; Goswami, A.; Kappera, R.; de Carvalho Castro e Silva, C.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2014, 7 45–49.

    Google Scholar 

  19. Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Sung, P.; Sung, J.; Ye, X. C.; Zhao, T. S.; Diroll, B. T.; Murray, C. B. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352 205–208.

    CAS  Google Scholar 

  20. Du, Y. C.; Liu, H.; Neal, A. T.; Si, M. W.; Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: Reduction in sheet and contact resistances. IEEE Electron Device Lett. 2013, 34 1328–1330.

    CAS  Google Scholar 

  21. Ding, Q.; Czech, K. J.; Zhao, Y. Z.; Zhai, J. Y.; Hamers, R. J.; Wright, J. C.; Jin, S. Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces 2017, 9 12734–12742.

    CAS  Google Scholar 

  22. Wang, H.; Bi, S. G.; Ye, Y. S.; Xue, Y.; Xie, X. L.; Mai, Y. W. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Nanoscale 2015, 7 3548–3557.

    CAS  Google Scholar 

  23. Haratipour, N.; Namgung, S.; Oh, S. H.; Koester, S. J. Fundamental limits on the subthreshold slope in schottky source/drain black phosphorus field-effect transistors. ACS Nano 2016, 10 3791–3800.

    CAS  Google Scholar 

  24. Greenwood, J.; Phan, T. H.; Fujita, Y.; Li, Z.; Ivasenko, O.; Vanderlinden, W.; van Gorp, H.; Frederickx, W.; Lu, G.; Tahara, K. et al. Covalent modification of graphene and graphite using diazonium chemistry: Tunable grafting and nanomanipulation. ACS Nano 2015, 9 5520–5535.

    CAS  Google Scholar 

  25. Sim, D. M.; Han, H. J.; Yim, S.; Choi, M. J.; Jeon, J.; Jung, Y. S. Long-term stable 2H-MoS2 dispersion: Critical role of solvent for simultaneous phase restoration and surface functionalization of liquid-exfoliated MoS2. ACS Omega 2017, 2 4678–4687.

    CAS  Google Scholar 

  26. Vishnoi, P.; Sampath, A.; Waghmare, U. V.; Rao, C. N. R. Covalent functionalization of nanosheets of MoS2 and MoSe2 by substituted benzenes and other organic molecules. Chem. —Eur. J. 2017, 23 886–895.

    CAS  Google Scholar 

  27. Hunger, R.; Jaegermann, W.; Merson, A.; Shapira, Y.; Pettenkofer, C.; Rappich, J. Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111). J. Phys. Chem. B 2006, 110 15432–15441.

    CAS  Google Scholar 

  28. Tan, S. J. R.; Sarkar, S.; Zhao, X. X.; Luo, X.; Luo, Y. Z.; Poh, S. M.; Abdelwahab, I.; Zhou, W.; Venkatesan, T.; Chen, W. et al. Temperature-and phase-dependent phonon renormalization in 1T′-MoS2. Acs Nano 2018, 12 5051–5058.

    CAS  Google Scholar 

  29. Benson, E. E.; Zhang, H. Y.; Schuman, S. A.; Nanayakkara, S. U.; Bronstein, N. D.; Ferrere, S.; Blackburn, J. L.; Miller, E. M. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS2 nanosheets via covalent functionalization. J. Am. Chem. Soc. 2018, 140 441–450.

    CAS  Google Scholar 

  30. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 2012, 22 1385–1390.

    CAS  Google Scholar 

  31. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85 161403.

    Google Scholar 

  32. Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8 5323–5329.

    CAS  Google Scholar 

  33. Hallam, T.; Duffy, C. M.; Minakata, T.; Ando, M.; Sirringhaus, H. A scanning Kelvin probe study of charge trapping in zone-cast pentacene thin film transistors. Nanotechnology 2008, 20 025203.

    Google Scholar 

  34. Song, I.; Park, C.; Choi, H. C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2015, 5 7495–7514.

    CAS  Google Scholar 

  35. Lee, H.; Bak, S.; Cho, Y.; Kim, M.; Kang, S. H.; Bui, V. Q.; Le, H. M.; Kim, S. W.; Lee, H. Hydrogen adsorption engineering by intramolecular proton transfer on 2D nanosheets. NPG Asia Mater. 2018, 10 441–454.

    CAS  Google Scholar 

  36. Cai, Y. Q.; Zhou, H. B.; Zhang, G.; Zhang, Y. W. Modulating carrier density and transport properties of MoS2 by organic molecular doping and defect engineering. Chem. Mater. 2016, 28 8611–8621.

    CAS  Google Scholar 

  37. Ouyang, B.; Mi, Z. T.; Song, J. Bandgap transition of 2H transition metal dichalcogenides: Predictive tuning via inherent interface coupling and strain. J. Phys. Chem. C 2016, 120 8927–8935.

    CAS  Google Scholar 

  38. Nguyen, E. P.; Carey, B. J.; Ou, J. Z.; van Embden, J.; Gaspera, E. D.; Chrimes, A. F.; Spencer, M. J. S.; Zhuiykov, S.; Kalantar-Zadeh, K.; Daeneke, T. Electronic tuning of 2D MoS2 through surface functionalization. Adv. Mater. 2015, 27 6225–6229.

    CAS  Google Scholar 

  39. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6 5982.

    CAS  Google Scholar 

  40. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12 815–820.

    CAS  Google Scholar 

  41. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11 5111–5116.

    CAS  Google Scholar 

  42. Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 2003, 91 305–327.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (No. IBS-R011-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoyoung Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Bak, S., Kim, J. et al. The effect of the dopant’s reactivity for high-performance 2D MoS2 thin-film transistor. Nano Res. 14, 198–204 (2021). https://doi.org/10.1007/s12274-020-3068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3068-2

Keywords

Navigation