Skip to main content
Log in

A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li+ transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li+ transference number of 0.52. Moreover, the Li/UPP-5/LiFePO4 full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li+ conductive network for the development of all-solid-state lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Balogun, W.T. Qiu, Y. Luo, et al., A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials, Nano Res., 9(2016), No. 10, p. 2823.

    Article  CAS  Google Scholar 

  2. J. Liu, Z.N. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(2019), No. 3, p. 180.

    Article  CAS  Google Scholar 

  3. Y. Wang, W.D. Richards, S.P. Ong, et al., Design principles for solid-state lithium superionic conductors, Nat. Mater., 14(2015), No. 10, p. 1026.

    Article  CAS  Google Scholar 

  4. C. Yu, S. Ganapathy, E.R.H. van Eck, et al., Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface, Nat. Commun., 8(2017), No. 1, art. No. 1086.

  5. Y.L. Zhao, X.Z. Yuan, L.B. Jiang, et al., Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383(2020), art. No. 123089.

  6. T. Wei, Z.H. Zhang, Z.Y. Zhu, et al., Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries, Ionics, 25(2019), No. 4, p. 1523.

    Article  CAS  Google Scholar 

  7. J.B. Zhou, P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications, Chem. Eng. J., 446(2022), art. No. 137041.

  8. F.Y. Wang, Y.S. Ye, Z.M. Wang, et al., MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries, Ionics, 27(2021), No. 10, p. 4197.

    Article  CAS  Google Scholar 

  9. T. Wei, Y.Y. Zhou, C. Sun, et al., Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology, 84(2024), p. 89.

    Article  CAS  Google Scholar 

  10. Z.H. Chen, I. Belharouak, Y.K. Sun, and K. Amine, Titanium-based anode materials for safe lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 959.

    Article  CAS  Google Scholar 

  11. Z.H. Gao, S. Rao, T.Y. Zhang, et al., Design strategies of flame-retardant additives for lithium ion electrolyte, J. Electrochem. Energy Convers. Storage, 19(2022), No. 3, art. No. 030910.

  12. L.P. Zhang, X.L. Li, M.R. Yang, and W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective, Energy Storage Mater., 41(2021), p. 522.

    Article  Google Scholar 

  13. Z.H. Zhang, T. Wei, J.H. Lu, et al., Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565.

    Article  CAS  Google Scholar 

  14. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326.

    Article  CAS  Google Scholar 

  15. J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., (2023)

  16. Z.F. Ruan, Y.Z. Du, H.F. Pan, et al., Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries, Polymer;, 14(2022), No. 10, art. No. 1950.

  17. X.X. Wu, K.Y. Chen, Z.G. Yao, et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries, J. Power Sources, 501(2021), art. No. 229946.

  18. Z.L. Xiao, T.Y. Long, L.B. Song, Y.H. Zheng, and C. Wang, Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries, Ionics, 28(2022), No. 1, p. 15.

    Article  CAS  Google Scholar 

  19. Q.Y. Guo, F.L. Xu, L. Shen, et al., 20 µ m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries, Energy Mater. Adv., 2022(2022), art. No. 9753506.

  20. Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, and X.Y. Yao, 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater., 33(2021), No. 25, art. No. 2100353.

  21. Q. Zhang, S.J. Wang, Y. Liu, et al., UiO-66-NH2 @77 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438.

  22. C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363.

    Article  CAS  Google Scholar 

  23. Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139.

    Article  Google Scholar 

  24. R. Dutta and A. Kumar, Ion transport dynamics in ionic liquid incorporated CuBTC-metal-organic framework based composite polymer electrolyte, J. Mater. Sci., 30(2019), No. 2, p. 1117.

    CAS  Google Scholar 

  25. T. Wei, J.H. Lu, P. Zhang, et al., Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., (2022), art. No. 107947.

  26. T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 2023. DOI: https://doi.org/10.1002/cjoc.202200816

  27. Q.Y. Han, S.Q. Wang, Z.Y. Jiang, X.C. Hu, and H.H. Wang, Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 20514.

    Article  CAS  Google Scholar 

  28. T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636.

    Article  CAS  Google Scholar 

  29. T. Wei, Z.M. Wang, M. Zhang, et al., Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31(2022), art. No. 103518.

  30. Z.E. Liu, Z.W. Hu, X.A. Jiang, et al., Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small, 18(2022), No. 37, art. No. 2203011.

  31. X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, and X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542(2022), art. No. 231792.

  32. P. Xu, H.Y. Chen, X. Zhou, and H.F. Xiang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660.

  33. T. Wei, Z.M. Wang, Q. Zhang, et al., Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review, CrystEngComm, 24(2022), No. 28, p. 5014.

    Article  CAS  Google Scholar 

  34. Z.Q. Wang, R. Tan, H.B. Wang, et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater., 30(2018), No. 2, art. No. 1704436.

  35. Y. Liu, Q.H. Zeng, P.P. Chen, et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys., 223(2022), No. 8, art. No. 2100325.

  36. J. Reiter and M. Nadherna, N-Allyl-N-mmethylpipridinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries, Electrochim. Acta, 71(2012), p. 22.

    Article  CAS  Google Scholar 

  37. X.M. Gao, Q.T. Qu, G.B. Zhu, et al., Piperidinium-based ionic liquid electrolyte with linear solvent and LiODFB for LiFePO4/Li cells at room and high temperature, RSC Adv., 7(2017), No. 79, p. 50135.

    Article  CAS  Google Scholar 

  38. C.B. Zhu, H. Cheng, and Y. Yang, Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids, J. Electrochem. Soc., 155(2008), No. 8, art. No. A569.

  39. R. Dutta and A. Kumar, Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid, J. Phys. D: Appl. Phys., 50(2017), No. 42, art. No. 425302.

  40. K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, and H. Kitagawa, Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework, Chem. Sci., 6(2015), No. 7, p. 4306.

    Article  CAS  Google Scholar 

  41. Z.L. Hu, X.J. Zhang, and S.M. Chen, A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries, J. Power Sources, 477(2020), art. No. 228754.

  42. T.H. Zhou, Y. Zhao, J.W. Choi, and A. Coskun, Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 42, p. 22791.

    Article  CAS  Google Scholar 

  43. T. Wei, Z.H. Zhang, Z.M. Wang, et al., Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTF-SI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428.

    Article  CAS  Google Scholar 

  44. Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), art. No. 116935.

  45. N. Chen, Y. Xing, L.L. Wang, et al., “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47(2018), p. 35.

    Article  Google Scholar 

  46. Q.H. Zeng, J.A. Wang, X. Li, et al., Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries, ACS Energy Lett., 6(2021), No. 7, p. 2434.

    Article  CAS  Google Scholar 

  47. J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 27, art. No. 1902429.

  48. K. Wang, L.Y. Yang, Z.Q. Wang, et al., Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles, Chem. Commun., 54(2018), No. 93, p. 13060.

    Article  CAS  Google Scholar 

  49. M. Liu, S. Zhang, E.R.H. van Eck, C. Wang, S. Ganapathy, and M. Wagemaker, Improving Li-ion interfacial transport in hybrid solid electrolytes, Nat. Nanotechnol, 17(2022), No. 9, p. 959.

    Article  CAS  Google Scholar 

  50. Z.J. Bi, N. Zhao, L.N. Ma, et al., Interface engineering on cathode side for solid garnet batteries, Chem. Eng. J., 387(2020), art. No. 124089.

  51. K.X. Liu, Z.Y. Wang, L.Y. Shi, S. Jungsuttiwong, and S. Yuan, Ionic liquids for high performance lithium metal batteries, J. Energy Chem., 59(2021), p. 320.

    Article  CAS  Google Scholar 

  52. D.J. Yoo, K.J. Kim, and J.W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702744.

Download references

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (No. 21701083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wei.

Ethics declarations

The authors declare no competing financial interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Zhang, Q., Wang, S. et al. A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries. Int J Miner Metall Mater 30, 1897–1905 (2023). https://doi.org/10.1007/s12613-023-2639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2639-0

Keywords

Navigation