Skip to main content
Log in

Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) carbon nanomaterials with hierarchical porous structure and heteroatoms doping are highly desirable in the fields of energy storage because of their rich active surface and open ion diffusion channels. However, the scalable preparation of carbon materials simultaneously possessing ultrathin 2D feature and hierarchical pores remains a considerable challenge. Herein, a facile one-step method to massively fabricate 2D porous chitin nanosheets (coded as PCNs) via a phytic acid assisted top-down exfoliation of bulk chitin under hydrothermal treatment was presented. Subsequently, 2D carbon nanosheets with extra-thin thickness (3.6 nm), well-defined hierarchical porosity, high specific surface area (855 m2·g-1), as well as abundant self-doped heteroatoms (N, O, P) were fabricated by carbonizing the PCNs, and was named as HPCNs. The as-obtained HPCNs demonstrated remarkable electrochemical performance as electrode material for supercapacitors. The symmetric supercapacitors (SSCs) based on HPCNs exhibited a high specific capacitance of 79 F·g-1 (316 F·g-1 for single electrode) in 6 M KOH aqueous electrolyte solution, as well as a remarkable energy density of 23.8 W·h·kg-1 by using 1 M Li2SO4 as electrolyte. It is also demonstrated that HPCNs/PCNs hybrid dispersions can be used as inks to fabricate conductive films and energy devices with high strength and superior flexibility. This work paves a new avenue for the economical and large-scale synthesis of 2D hierarchically porous carbon materials for energy storage related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, S. L.; Wu, X. Q.; Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater.2017, 29, 1606128.

    Google Scholar 

  2. Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz.2019, 4, 77–98.

    CAS  Google Scholar 

  3. Deng, J.; Deng, D. H.; Bao, X. H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective. Adv. Mater.2017, 29, 1606967.

    Google Scholar 

  4. Wang, L.; Zhang, Y.; Chen, L.; Xu, H. X.; Xiong, Y. J. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater.2018, 30, 1801955.

    Google Scholar 

  5. Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc.2013, 135, 1524–1530.

    CAS  Google Scholar 

  6. Zheng, X. Y.; Luo, J. Y.; Lv, W.; Wang, D. W.; Yang, Q. H. Two-dimensional porous carbon: Synthesis and ion-transport properties. Adv. Mater.2015, 27, 5388–5395.

    CAS  Google Scholar 

  7. He, Y. F.; Zhuang, X. D.; Lei, C. J.; Lei, L. C.; Hou, Y.; Mai, Y. Y.; Feng, X. L. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today2019, 24, 103–119.

    CAS  Google Scholar 

  8. Yang, M.; Zhou, Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci.2017, 4, 1600408.

    Google Scholar 

  9. Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc.2011, 133, 2816–2819.

    CAS  Google Scholar 

  10. Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy2018, 51, 366–372.

    CAS  Google Scholar 

  11. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater.2019, 9, 1900149.

    Google Scholar 

  12. Wan, J.; Huang, L.; Wu, J. B.; Xiong, L. K.; Hu, Z. M.; Yu, H. M.; Li, T. Q.; Zhou, J. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv. Funct. Mater.2018, 28, 1800382.

    Google Scholar 

  13. Hao, G. P.; Tang, C.; Zhang, E.; Zhai, P. Y.; Yin, J.; Zhu, W. C.; Zhang, Q.; Kaskel S. Thermal exfoliation of layered Metal-Organic Frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries. Adv. Mater.2017, 29, 1702829.

    Google Scholar 

  14. Wan, J.; Wu, J. B.; Gao, X.; Li, T. Q.; Hu, Z. M.; Yu, H. M.; Huang, L. Structure confined porous Mo2C for efficient hydrogen evolution. Adv. Funct. Mater.2017, 27, 1703933.

    Google Scholar 

  15. Wu, X. L.; Jiang, L. L.; Long, C. L.; Fan, Z. J. From flour to honeycomblike carbon foam: Carbon makes room for high energy density super-capacitors. Nano Energy2015, 13, 527–536.

    CAS  Google Scholar 

  16. Liu, T. Y.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A2017, 5, 17705–17733.

    CAS  Google Scholar 

  17. Hu, F. Y.; Wang, J. Y.; Hu, S.; Li, L. F.; Shao, W. L.; Qiu, J. S.; Lei, Z. B.; Deng, W. Q.; Jian, X. G. Engineered fabrication of hierarchical frameworks with tuned pore structure and N,O-Co-doping for highperformance supercapacitors. ACS Appl. Mater. Interfaces2017, 9, 31940–31949.

    CAS  Google Scholar 

  18. Pan, L.; Wang, Y. X.; Hu, H.; Li, X. X.; Liu, J. L.; Guan, L.; Tian, W.; Wang, X. B.; Li, Y. P.; Wu, M. B. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon2018, 134, 345–353.

    CAS  Google Scholar 

  19. Wang, S.; Cheng, F.; Zhang, P.; Li, W. C.; Lin, Y.; Lu, A. H. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res.2017, 10, 2106–2116.

    CAS  Google Scholar 

  20. Yao, L.; Wu, Q.; Zhang, P. X.; Zhang, J. M.; Wang, D. R.; Li, Y. L.; Ren, X. Z.; Mi, H. W.; Deng, L. B.; Zheng, Z. J. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater.2018, 30, 1706054.

    Google Scholar 

  21. Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci.2014, 7, 3574–3592.

    CAS  Google Scholar 

  22. Yang, J.; Wu, H. L.; Zhu, M.; Ren, W. J.; Lin, Y.; Chen, H. B.; Pan, F. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/micropores carbon for surcapacitors. Nano Energy2017, 33, 453–461.

    CAS  Google Scholar 

  23. Kang, D. M.; Liu, Q. L.; Gu, J. J.; Su, Y. S.; Zhang, W.; Zhang, D. “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano2015, 9, 11225–11233.

    CAS  Google Scholar 

  24. Zhang, F.; Liu, T. Y.; Li, M. Y.; Yu, M. H.; Luo, Y.; Tong, Y. X.; Li, Y. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett.2017, 17, 3097–3104.

    CAS  Google Scholar 

  25. Zhao, H. Y.; Zhang, F.; Zhang, S. M.; He, S. N.; Shen, F.; Han, X. G.; Yin, Y. D.; Gao, C. B. Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res.2018, 11, 1822–1833.

    CAS  Google Scholar 

  26. Sevilla, M.; Ferrero, G. A.; Fuertes, A. B. Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon2017, 114, 50–58.

    CAS  Google Scholar 

  27. Wu, S. L.; Chen, G. X.; Kim, N. Y.; Ni, K.; Zeng, W. C.; Zhao, Y.; Tao, Z. C.; Ji, H. X.; Lee, Z.; Zhu, Y. W. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small2016, 12, 2376–2384.

    CAS  Google Scholar 

  28. Gong, Y. N.; Li, D. L.; Luo, C. Z.; Fu, Q.; Pan, C. X. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem.2017, 19, 4132–4140.

    CAS  Google Scholar 

  29. Wang, Z. F.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Li, H. F.; Huang, Y.; Zhi, C. Y. Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Mater. Sci. Eng. R2020, 139, 100520.

    Google Scholar 

  30. Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater.2019, 9, 1803046.

    Google Scholar 

  31. Duan, B.; Huang, Y.; Lu, A.; Zhang, L. N. Recent advances in chitin based materials constructed via physical methods. Prog. Polym. Sci.2018, 82, 1–33.

    CAS  Google Scholar 

  32. Gao, L. F.; Xiong, L. K.; Xu, D. F.; Cai, J.; Zhou, J.; Huang, L.; Zhang, L. N. Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors. ACS Appl. Mater. Interfaces2018, 10, 28918–28927.

    CAS  Google Scholar 

  33. Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science2013, 339, 773–779.

    CAS  Google Scholar 

  34. Duan, B.; Liu, F.; He, M.; Zhang, L. N. A-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem.2014, 16, 2835–2845.

    CAS  Google Scholar 

  35. Chen, P.; Zhang, L. N. Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules2006, 7, 1700–1706.

    CAS  Google Scholar 

  36. Ifuku, S.; Saimoto, H. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale2012, 4, 3308–3318.

    CAS  Google Scholar 

  37. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev.2011, 40, 3941–3994.

    CAS  Google Scholar 

  38. Lu, S. Y.; Jin, M.; Zhang, Y.; Niu, Y. B.; Gao, J. C.; Li, C. M. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater.2018, 8, 1702545.

    Google Scholar 

  39. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun.2014, 5, 4554.

    CAS  Google Scholar 

  40. Xu, D. F.; Xiao, X.; Cai, J.; Zhou, J.; Zhang, L. N. Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J. Mater. Chem. A2015, 3, 16424–16429.

    CAS  Google Scholar 

  41. Zhou, W.; Lei, S. J.; Sun, S. Q.; Ou, X. L.; Fu, Q.; Xu, Y. L.; Xiao, Y. H.; Cheng, B. C. From weed to multi-heteroatom-doped honeycomblike porous carbon for advanced supercapacitors: A gelatinization-controlled one-step carbonization. J. Power Sources2018, 402, 203–212.

    CAS  Google Scholar 

  42. Hou, J. H.; Jiang, K.; Wei, R.; Tahir, M.; Wu, X. G.; Shen, M.; Wang, X. Z.; Cao, C. B. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance super-capacitors. ACS Appl. Mater. Interfaces2017, 9, 30626–30634.

    CAS  Google Scholar 

  43. Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A highperformance anode material for sodium-ion batteries. Adv. Sci.2017, 4, 1600243.

    Google Scholar 

  44. Wang, X.; Lou, M. H.; Yuan, X. T.; Dong, W. J.; Dong, C. L.; Bi, H.; Huang, F. Q. Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. Carbon2017, 118, 511–516.

    CAS  Google Scholar 

  45. Zhang, Y.; Ma, Q. T.; Li, H.; Yang, Y. W.; Luo, J. Y. Robust production of ultrahigh surface area carbon sheets for energy storage. Small2018, 14, 1800133.

    Google Scholar 

  46. Wang, M. R.; Li, Y.; Fang, J.; Villa, C. J.; Xu, Y. B.; Hao, S. Q.; Li, J.; Liu, Y. X.; Wolverton, C.; Chen, X. Q. et al. Superior oxygen reduction reaction on phosphorus-doped carbon dot/graphene aerogel for all-solid-state flexible Al-air batteries. Adv. Energy Mater.2020, 10, 1902736.

    CAS  Google Scholar 

  47. Sun, F.; Gao, J. H.; Pi, X. X.; Wang, L. J.; Yang, Y. Q.; Qu, Z. B.; Wu, S. H. High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J. Power Sources2017, 337, 189–196.

    CAS  Google Scholar 

  48. Wang, J. X.; Xia, Y.; Liu, Y.; Li, W.; Zhao, D. Y. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Mater.2019, 22, 147–153.

    Google Scholar 

  49. Luo, D.; Xu, J.; Guo, Q. B.; Fang, L. Z.; Zhu, X. H.; Xia, Q. Y.; Xia, H. Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater.2018, 28, 1805371.

    Google Scholar 

  50. Qu, J. Y.; Geng, C.; Lv, S. Y.; Shao, G. H.; Ma, S. Y.; Wu, M. B. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta2015, 176, 982–988.

    CAS  Google Scholar 

  51. Hao, R.; Yang, Y.; Wang, H.; Jia, B. B.; Ma, G. D.; Yu, D. D.; Guo, L.; Yang, S. H. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy2018, 45, 220–228.

    CAS  Google Scholar 

  52. Wu, F.; Dong, R. Q.; Bai, Y.; Li, Y.; Chen, G. H.; Wang, Z. H.; Wu, C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries. ACS Appl. Mater. Interfaces2018, 10, 21335–21342.

    CAS  Google Scholar 

  53. Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater.2009, 19, 438–447.

    CAS  Google Scholar 

  54. Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev.2015, 44, 7484–7539.

    CAS  Google Scholar 

  55. Díez, N.; Mysyk, R.; Zhang, W.; Goikolea, E.; Carriazo, D. One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. J. Mater. Chem. A2017, 5, 14619–14629.

    Google Scholar 

  56. Li, C. Y.; Wu, W. Z.; Wang, P.; Zhou, W. B.; Wang, J.; Chen, Y. H.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv. Sci.2019, 6, 1801665.

    Google Scholar 

  57. Liu, W.; Tang, Y. K.; Sun, Z. P.; Gao, S. S.; Ma, J. H.; Liu, L. A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon2017, 115, 754–762.

    CAS  Google Scholar 

  58. Wang, H. L.; Xu, Z. W.; Kohandehghan, A.; Li, Z.; Cui, K.; Tan, X. H.; Stepheson, T. J.; King’ondu, C. K.; Hoolt, C. B.; Olsen, B. C. et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano2013, 7, 5131–5141.

    CAS  Google Scholar 

  59. Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater.2018, 12, 191–196.

    Google Scholar 

  60. Liu, B.; Zhou, X. H.; Chen, H. B.; Liu, Y. J.; Li, H. M. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim. Acta2016, 208, 55–63.

    CAS  Google Scholar 

  61. Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A2014, 2, 19848–19854.

    CAS  Google Scholar 

  62. Wang, Q.; Yan, J.; Wang, Y. B.; Wei, T.; Zhang, M. L.; Jing, X. Y.; Fan, Z. J. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon2014, 67, 119–127.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Natural Science Foundation of China (No. 21334005), and the Major International (Regional) Joint Research Project (No. 21620102004). The authors gratefully acknowledge the Analytical and Testing Center of WHU for allowing us to use its facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Huang or Lina Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhang, G., Cai, J. et al. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 13, 1604–1613 (2020). https://doi.org/10.1007/s12274-020-2778-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2778-9

Keywords

Navigation