Skip to main content
Log in

A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rare-earth (RE) based luminescent probes exhibit rich optical properties including upconversion and down-conversion luminescence spanning a broad spectral range from 300 to 3,000 nm, and have generated great scientific and practical interest from telecommunication to biological imaging. While upconversion nanoparticles have been investigated for decades, down-conversion luminescence of RE-based probes in the second near-infrared (NIR-II, 1,000–1,700 nm) window for in vivo biological imaging with sub-centimeter tissue penetration and micrometer image resolution has come into light only recently. In this review, we present recent progress on RE-based NIR-II probes for in vivo vasculature and molecular imaging with a focus on Er3+-based nanoparticles due to the down-conversion luminescence at the long-wavelength end of the NIR-II window (NIR-IIb, 1,500–1,700 nm). Imaging in NIR-IIb is superior to imaging with organic probes such as ICG and IRDye800 in the ~ 800 nm NIR range and the 1,000-1,300 nm short end of NIR-II range, owing to minimized light scattering and autofluorescence background. Doping by cerium and other ions and phase engineering of Er3+-based nanoparticles, combined with surface hydrophilic coating optimization can afford ultrabright, biocompatible NIR-IIb probe towards clinical translation for human use. The Nd3+-based probes with NIR-II emission at 1,050 and 1,330 nm are also discussed, including Nd3+ doped nanocrystals and Nd3+-organic ligand complexes. This review also points out future directions for further development of multi-functional RE NIR-II probes for biological imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng.2017, 1, 0010.

    Article  CAS  Google Scholar 

  2. Rao, J. H.; Dragulescu-Andrasi, A.; Yao, H. Q. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol.2007, 18, 17–25.

    Article  CAS  Google Scholar 

  3. Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med.2012, 18, 1841–1846.

    Article  CAS  Google Scholar 

  4. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol.2009, 4, 773–780.

    Article  CAS  Google Scholar 

  5. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater.2016, 15, 235–242.

    Article  CAS  Google Scholar 

  6. Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater.2017, 29, 1605497.

    Article  CAS  Google Scholar 

  7. Li, B. H.; Lu, L. F.; Zhao, M. Y.; Lei, Z. H.; Zhang, F. An efficient 1,064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem.,.Int. Ed.2018, 57, 7483–7487.

    Article  CAS  Google Scholar 

  8. Sun, Y.; Ding, M. M.; Zeng, X. D.; Xiao, Y. L.; Wu, H. P.; Zhou, H.; Ding, B. B.; Qu, C. R.; Hou, W.; Er-bu, A. G. A. et al. Novel brightemission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem. Sci.2017, 8, 3489–3493.

    Article  CAS  Google Scholar 

  9. Zhu, S. J.; Yang, Q. L.; Antaris, A. L.; Yue, J. Y.; Ma, Z. R.; Wang, H. S.; Huang, W.; Wan, H.; Wang, J.; Diao, S. et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc. Natl Acad. Sci. USA2017, 114, 962–967.

    Article  CAS  Google Scholar 

  10. Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics2014, 8, 723–730.

    Article  CAS  Google Scholar 

  11. Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: The recent advances. Adv. Drug Del. Rev.2013, 65, 1951–1963.

    Article  CAS  Google Scholar 

  12. Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc.2012, 134, 16971–16974.

    Article  CAS  Google Scholar 

  13. Robinson, J. T.; Hong, G. S.; Liang, Y. Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc.2012, 134, 10664–10669.

    Article  CAS  Google Scholar 

  14. Bardhan, N. M.; Ghosh, D.; Belcher, A. M. Carbon nanotubes as in vivo bacterial probes. Nat. Commun.2014, 5, 4918.

    Article  CAS  Google Scholar 

  15. Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun.2018, 9, 1171.

    Article  CAS  Google Scholar 

  16. Tao, Z. M.; Hong, G. S.; Shinji, C.; Chen, C. X.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y. P.; Dai, H. J. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem.,.Int. Ed.2013, 52, 13002–13006.

    Article  CAS  Google Scholar 

  17. Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng.2017, 1, 0056.

    Article  CAS  Google Scholar 

  18. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun.2013, 4, 2199.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano2012, 6, 3695–3702.

    Article  CAS  Google Scholar 

  20. Liang, L.; Chen, N.; Jia, Y. Y.; Ma, Q. Q.; Wang, J.; Yuan, Q.; Tan, W. H. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res.2019, 12, 1279–1292.

    Article  CAS  Google Scholar 

  21. Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res.2015, 8, 1637–1647.

    Article  CAS  Google Scholar 

  22. Ortgies, D. H.; Garcia-Villalon, A. L.; Granado, M.; Amor, S.; Rodriguez, E. M.; Santos, H. D. A.; Yao, J. K.; Rubio-Retama, J.; Jaque, D. Infrared fluorescence imaging of infarcted hearts with Ag2S nanodots. Nano Res.2019, 12, 749–757.

    Article  CAS  Google Scholar 

  23. Diao, S.; Blackburn, J. L.; Hong, G. S.; Antaris, A. L.; Chang, J. L.; Wu, J. Z.; Zhang, B.; Cheng, K.; Kuo, C. J.; Dai, H. J. Fluorescence imaging in vivo at wavelengths beyond 1,500 nm. Angew. Chem., Int. Ed.2015, 54, 14758–14762.

    Article  CAS  Google Scholar 

  24. Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res.2015, 8, 1932–1943.

    Article  CAS  Google Scholar 

  25. Wang, Z. M.; Upputuri, P. K.; Zhen, X.; Zhang, R. C.; Jiang, Y. Y.; Ai, X. Z.; Zhang, Z. J.; Hu, M.; Meng, Z. Y.; Lu, Y. P. et al. pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Res.2019, 12, 49–55.

    Article  CAS  Google Scholar 

  26. Wan, H.; Ma, H. L.; Zhu, S. J.; Wang, F. F.; Tian, Y.; Ma, R.; Yang, Q. L.; Hu, Z. B.; Zhu, T.; Wang, W. Z. et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv. Funct. Mater.2018, 28, 1804956.

    Article  CAS  Google Scholar 

  27. Kamimura, M.; Matsumoto, T.; Suyari, S.; Umezawa, M.; Soga, K. Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped β-NaYF4 nanoparticles. J. Mater. Chem. B2017, 5, 1917–1925.

    Article  CAS  Google Scholar 

  28. Zhu, S. J.; Herraiz, S.; Yue, J. Y.; Zhang, M. X.; Wan, H.; Yang, Q. L.; Ma, Z. R.; Wang, Y.; He, J. H.; Antaris, A. L. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater.2018, 30, 1705799.

    Article  CAS  Google Scholar 

  29. Tao, Z. M.; Dang, X. N.; Huang, X.; Muzumdar, M. D.; Xu, E. S.; Bardhan, N. M.; Song, H. Q.; Qi, R. G.; Yu, Y. J.; Li, T. et al. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials2017, 134, 202–215.

    Article  CAS  Google Scholar 

  30. Wang, F. F.; Wan, H.; Ma, Z. R.; Zhong, Y. T.; Sun, Q. C.; Tian, Y.; Qu, L. Q.; Du, H.; Zhang, M. X.; Li, L. L. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods2019, 16, 545–552.

    Article  CAS  Google Scholar 

  31. Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater.2014, 26, 6922–6932.

    Article  CAS  Google Scholar 

  32. Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol.2019, 37, 1322–1331.

    Article  CAS  Google Scholar 

  33. Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine2016, 11, 673–692.

    Article  CAS  Google Scholar 

  34. Clough, T. J.; Jiang, L. J.; Wong, K. L.; Long, N. J. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun.2019, 10, 1420.

    Article  CAS  Google Scholar 

  35. Gapontsev, V. P.; Matitsin, S. M.; Isineev, A. A.; Kravchenko, V. B. Erbium glass lasers and their applications. Opt. Laser Technol.1982, 14, 189–196.

    Article  CAS  Google Scholar 

  36. Yan, Y. C.; Faber, A. J.; de Waal, H. Luminescence quenching by OH groups in highly Er-doped phosphate glasses. J. Non-Cryst. Solids1995, 181, 283–290.

    Article  CAS  Google Scholar 

  37. Zhang, L.; Hu, H. F. The effect of OH. on IR emission of Nd3+, Yb3+ and Er3+ doped tetraphosphate glasses. J. Phys. Chem. Solids2002, 63, 575–579.

    Article  CAS  Google Scholar 

  38. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev.2009, 109, 4283–4374.

    Article  CAS  Google Scholar 

  39. Eliseeva, S. V.; Bunzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev.2010, 39, 189–227.

    Article  CAS  Google Scholar 

  40. Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev.2009, 38, 976–989.

    Article  CAS  Google Scholar 

  41. Boyn, R. 4f–4f luminescence of rare-earth centers in II–VI compounds. Phys. Status Solidi B1988, 148, 11–47.

    Article  CAS  Google Scholar 

  42. Weber, M. J. Radiative and multiphonon relaxation of rare-earth ions in Y2O3. Phys. Rev.1968, 171, 283–291.

    Article  CAS  Google Scholar 

  43. Saisudha, M. B.; Ramakrishna, J. Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses. Phys. Rev. B1996, 53, 6186–6196.

    Article  CAS  Google Scholar 

  44. Chen, G. Y.; Liu, H. C.; Liang, H. J.; Somesfalean, G.; Zhang, Z. G. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C2008, 112, 12030–12036.

    Article  CAS  Google Scholar 

  45. Ofelt, G. S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys.1962, 37, 511–520.

    Article  CAS  Google Scholar 

  46. Judd, B. R. Optical absorption intensities of rare-earth ions. Phys. Rev.1962, 127, 750–761.

    Article  CAS  Google Scholar 

  47. Zou, W. Q.; Visser, C.; Maduro, J. A.; Pshenichnikov, M. S.; Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics2012, 6, 560–564.

    Article  CAS  Google Scholar 

  48. Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Biological imaging without autofluorescence in the second near-infrared region. Nano Res.2015, 8, 3027–3034.

    Article  CAS  Google Scholar 

  49. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater.2005, 4, 138–142.

    Article  CAS  Google Scholar 

  50. Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ~ 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA2018, 115, 6590–6595.

    Article  CAS  Google Scholar 

  51. Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W. B.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun.2016, 7, 12749.

    Article  CAS  Google Scholar 

  52. Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the downshifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun.2017, 8, 737.

    Article  CAS  Google Scholar 

  53. Dang, X. G.; Gu, L.; Qi, J. F.; Correa, S.; Zhang, G. R.; Belcher, A. M.; Hammond, P. T. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA2016, 113, 5179–5184.

    Article  CAS  Google Scholar 

  54. Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc.2012, 134, 20849–20857.

    Article  CAS  Google Scholar 

  55. Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc.2008, 130, 5642–5643.

    Article  CAS  Google Scholar 

  56. Li, D. G.; Qin, W. P.; Zhang, P.; Wang, L. L.; Lan, M.; Shi, P. B. Efficient luminescence enhancement of Gd2O3: Ln3+ (Ln = Yb/Er, Eu) NCs by codoping Zn2+ and Li+ inert ions. Opt. Mater. Express2017, 7, 329–340.

    Article  CAS  Google Scholar 

  57. Rahman, P.; Green, M. The synthesis of rare earthfluoride based nanoparticles. Nanoscale2009, 1, 214–224.

    Article  CAS  Google Scholar 

  58. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem.2006, 45, 6661–6665.

    Article  CAS  Google Scholar 

  59. Yin, W. Y.; Zhao, L. N.; Zhou, L. J.; Gu, Z. J.; Liu, X. X.; Tian, G.; Jin, S.; Yan, L.; Ren, W. L.; Xing, G. M. et al. Enhanced red emission from GdF3: Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem. -Eur. J.2012, 18, 9239–9245.

    Article  CAS  Google Scholar 

  60. Gu, Z. J.; Yan, L.; Tian, G.; Li, S. J.; Chai, Z. F.; Zhao, Y. L. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater.2013, 25, 3758–3779.

    Article  CAS  Google Scholar 

  61. Haase, M.; Schafer, H. Upconverting nanoparticles. Angew. Chem., -.Int. Ed.2011, 50, 5808–5829.

    Article  CAS  Google Scholar 

  62. Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater.2009, 19, 2924–2929.

    Article  CAS  Google Scholar 

  63. Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core.shell nanoparticles. Nat. Mater.2011, 10, 968–973.

    Article  CAS  Google Scholar 

  64. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature2010, 463, 1061–1065.

    Article  CAS  Google Scholar 

  65. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev.2012, 41, 1323–1349.

    Article  CAS  Google Scholar 

  66. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev.2015, 115, 10725–10815.

    Article  CAS  Google Scholar 

  67. Huo, L. L.; Zhou, J. J.; Wu, R. Z.; Ren, J. F.; Zhang, S. J.; Zhang, J. J.; Xu, S. Q. Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing. Opt. Mater. Express2016, 6, 1056–1064.

    Article  CAS  Google Scholar 

  68. Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater.2018, 30, 1802394.

    Article  CAS  Google Scholar 

  69. Xue, Z. L.; Zeng, S. J.; Hao, J. H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1,500 nm. Biomaterials2018, 171, 153–163.

    Article  CAS  Google Scholar 

  70. You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale2018, 10, 11477–11484.

    Article  CAS  Google Scholar 

  71. Li, Y. B.; Zeng, S. J.; Hao, J. H. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1,500 nm. ACS Nano2019, 13, 248–259.

    Article  CAS  Google Scholar 

  72. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today2006, 11, 812–818.

    Article  CAS  Google Scholar 

  73. Zhong, Y. T.; Rostami, I.; Wang, Z. H.; Dai, H. J.; Hu, Z. Y. Energy migration engineering of bright rare-earth upconversion nanoparticles for excitation by light-emitting diodes. Adv. Mater.2015, 27, 6418–6422.

    Article  CAS  Google Scholar 

  74. Zhong, Y. T.; Tian, G.; Gu, Z. J.; Yang, Y. J.; Gu, L.; Zhao, Y. L.; Ma, Y.; Yao, J. N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater.2014, 26, 2831–2837.

    Article  CAS  Google Scholar 

  75. Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1,525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem., Int. Ed.2014, 53, 12086–12090.

    Article  CAS  Google Scholar 

  76. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol.2001, 19, 316–317.

    Article  CAS  Google Scholar 

  77. Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol.2018, 13, 941–946.

    Article  CAS  Google Scholar 

  78. He, S.; Johnson, N. J. J.; Nguyen Huu, V. A.; Cory, E.; Huang, Y. R.; Sah, R. L.; Jokerst, J. V.; Almutairi, A. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles. Nano Lett.2017, 17, 4873–4880.

    Article  CAS  Google Scholar 

  79. Liu, L.; Li, X. M.; Fan, Y.; Wang, C. Y.; El-Toni, A. M.; Alhoshan, M. S.; Zhao, D. Y.; Zhang, F. Elemental migration in core/shell structured lanthanide doped nanoparticles. Chem. Mater.2019, 31, 5608–5615.

    Article  CAS  Google Scholar 

  80. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc.2017, 139, 3275–3282.

    Article  CAS  Google Scholar 

  81. Liu, Y. F.; Zhao, J.; Zhang, Y.; Zhang, H. F.; Zhang, Z. L.; Gao, H. P.; Mao, Y. L. Enhanced single-band red upconversion luminescence of α-NaErF4: Mn nanoparticles by a novel hollow-shell structure under multiple wavelength excitation. J. Alloys Compd.2019, 810, 151761.

    Article  CAS  Google Scholar 

  82. Wang, X.; Yakovliev, A.; Ohulchanskyy, T. Y.; Wu, L. N.; Zeng, S. J.; Han, X. J.; Qu, J. L.; Chen, G. Y. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging. Adv. Opt. Mater.2018, 6, 1800690.

    Article  CAS  Google Scholar 

  83. Fields, R. A.; Birnbaum, M.; Fincher, C. L. Highly efficient Nd: YVO4 diode-laser end-pumped laser. Appl. Phys. Lett.1987, 51, 1885–1886.

    Article  CAS  Google Scholar 

  84. Kane, T. J.; Byer, R. L. Monolithic, unidirectional single-mode Nd: YAG ring laser. Opt. Lett.1985, 10, 65–67.

    Article  CAS  Google Scholar 

  85. Ren, F.; Ding, L. H.; Liu, H. H.; Huang, Q.; Zhang, H.; Zhang, L. J.; Zeng, J. F.; Sun, Q.; Li, Z.; Gao, M. Y. Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials2018, 175, 30–43.

    Article  CAS  Google Scholar 

  86. Dai, Y.; Yang, D. P.; Yu, D. P.; Cao, C.; Wang, Q. H.; Xie, S. H.; Shen, L.; Feng, W.; Li, F. Y. Mussel-inspired polydopamine-coated lanthanide nanoparticles for NIR-II/CT dual imaging and photothermal therapy. ACS Appl. Mater. Interfaces2017, 9, 26674–26683.

    Article  CAS  Google Scholar 

  87. Quintanilla, M.; Zhang, Y.; Liz-Marzan, L. M. Subtissue plasmonic heating monitored with CaF2: Nd3+, Y3+ nanothermometers in the second biological window. Chem. Mater.2018, 30, 2819–2828.

    Article  CAS  Google Scholar 

  88. Villa, I.; Vedda, A.; Cantarelli, I. X.; Pedroni, M.; Piccinelli, F.; Bettinelli, M.; Speghini, A.; Quintanilla, M.; Vetrone, F.; Rocha, U. et al. 1.3 μm emitting SrF2: Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res.2015, 8, 649–665.

    Article  CAS  Google Scholar 

  89. Rocha, U.; Kumar, K. U.; Jacinto, C.; Villa, I.; Sanz-Rodriguez, F.; del Carmen Iglesias dela Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F. C. J. M.; Bovero, E. et al. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small2014, 10, 1141–1154.

    Article  CAS  Google Scholar 

  90. Qin, Q. S.; Zhang, P. Z.; Sun, L. D.; Shi, S.; Chen, N. X.; Dong, H.; Zheng, X. Y.; Li, L. M.; Yan, C. H. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging.Nanoscale2017, 9, 4660–4664.

    Article  CAS  Google Scholar 

  91. Jiang, X. Y.; Cao, C.; Feng, W.; Li, F. Y. Nd3+-doped LiYF4 nanocrystals for bio-imaging in the second near-infrared window. J. Mater. Chem. B2016, 4, 87–95.

    Article  CAS  Google Scholar 

  92. Zhao, M. Y.; Wang, R.; Li, B. H.; Fan, Y.; Wu, Y. F.; Zhu, X. Y.; Zhang, F. Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew. Chem.2019, 131, 2072–2076.

    Article  Google Scholar 

  93. Li, X. L.; Jiang, M. Y.; Li, Y. B.; Xue, Z. L.; Zeng, S. J.; Liu, H. R. 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Mater. Sci. Eng. C2019, 100, 260–268.

    Article  CAS  Google Scholar 

  94. Xue, X. J.; Duan, Z. C.; Suzuki, T.; Tiwari, R. N.; Yoshimura, M.; Ohishi, Y. Luminescence properties of α-NaYF4: Nd3+ nanocrystals dispersed in liquid: Local field effect investigation. J. Phys. Chem. C2012, 116, 22545–22551.

    Article  CAS  Google Scholar 

  95. Zhou, J. J.; Shirahata, N.; Sun, H. T.; Ghosh, B.; Ogawara, M.; Teng, Y.; Zhou, S. F.; Sa Chu, R. G.; Fujii, M.; Qiu, J. R. Efficient dual-modal NIR-to-NIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging. J. Phys. Chem. Lett.2013, 4, 402–408.

    Article  CAS  Google Scholar 

  96. Chen, G. Y.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Agren, H.; Prasad, P. N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano2012, 6, 2969–2977.

    Article  CAS  Google Scholar 

  97. Wang, R.; Zhou, L.; Wang, W. X.; Li, X. M.; Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun.2017, 8, 14702.

    Article  Google Scholar 

  98. Crosby, G. A.; Whan, R. E.; Alire, R. M. Intramolecular energy transfer in rare earth chelates. role of the triplet state. J. Chem. Phys.1961, 34, 743–748.

    Article  CAS  Google Scholar 

  99. Crosby, G. A.; Whan, R. E.; Freeman, J. J. Spectroscopic studies of rare earth chelates. J. Phys. Chem.1962, 66, 2493–2499.

    Article  CAS  Google Scholar 

  100. Hofstraat, J. W.; Wolbers, M. P. O.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Werts, M. H. V.; Verhoeven, J. W. Near-IR luminescent rare earth ion-sensitizer complexes. J. Fluoresc.1998, 8, 301–308.

    Article  CAS  Google Scholar 

  101. Li, Y. B.; Li, X. L.; Xue, Z. L.; Jiang, M. Y.; Zeng, S. J.; Hao, J. H. Second near-infrared emissive lanthanide complex for fast renalclearable in vivo optical bioimaging and tiny tumor detection. Biomaterials2018, 169, 35–44.

    Article  CAS  Google Scholar 

  102. Gu, Y. Y.; Guo, Z. Y.; Yuan, W.; Kong, M. Y.; Liu, Y. L.; Liu, Y. T.; Gao, Y. L.; Feng, W.; Wang, F.; Zhou, J. J. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics2019, 13, 525–531.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grant no. DP1-NS-105737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020). https://doi.org/10.1007/s12274-020-2721-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2721-0

Keywords

Navigation