Skip to main content
Log in

Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Fluorescence imaging in the second near-infrared region(900―1700 nm, NIR-II) with a high resolution and penetration depth due to the significantly reduced tissue scattering and autofluorescence has emerged as a useful tool in biomedical fields. Recently, many efforts have been devoted to the development of fluorophores with an emission band covering the long-wavelength end of NIR-II region(1500―1700 nm) to eliminate the autofluorescence. Alternatively, we believe imaging with a narrow bandwidth could also reduce the autofluorescence. As a proof of concept, NaYF4:Yb,Nd@NaYF4 downconversion nanoparticles(DCNPs) with sharp NIR-II emission were synthesized. The luminescence of DCNPs showed a half-peak width of 49 nm centered at 998 nm, which was perfectly matched with a (1000±25) nm bandpass filter. With this filter, we were able to retain most of the emissions from the nanoparticles, while the autofluorescence was largely reduced. After PEGylation, the DCNPs exhibited great performance for blood vessel and tumor imaging in living mice with significantly reduced autofluorescence and interference signals. This work provided an alternative way for the low-autofluorescence imaging and emphasized the importance of narrow emitting rare-earth doped nanoparticles for NIR-II imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong G. S., Antaris A. L., Dai H. J., Nat. Biomed. Eng., 2017, 1, 0010

    Article  CAS  Google Scholar 

  2. Ding F., Feng J., Zhang X., Sun J., Fan C., Ge Z., Adv. Drug. Deliv. Rev., 2021, 173, 141

    Article  CAS  Google Scholar 

  3. Cheng H. B., Li Y. Y., Tang B. Z., Yoon J., Chem. Soc. Rev., 2020, 49, 21

    Article  Google Scholar 

  4. Chen C., Ni X., Tian H. W., Liu Q., Guo D. S., Ding D., Angew. Chem. Int. Ed., 2020, 59, 10008

    Article  CAS  Google Scholar 

  5. Feng G. X., Zhang G. Q., Ding D., Chem. Soc. Rev., 2020, 49, 8179

    Article  CAS  Google Scholar 

  6. Ni X., Zhang X. Y., Duan X. C., Zheng H. L., Xue X. S., Ding D., Nano Lett., 2019, 19, 318

    Article  CAS  Google Scholar 

  7. Tang Y. F., Pei F., Lu X. M., Fan Q. L., Huang W., Adv. Opt. Mater., 2019, 7, 1900917

    Article  CAS  Google Scholar 

  8. Liu W., Zhang Y. H., Qi J., Qian J., Tang B. Z., Chem. Res. Chinese Universities, 2021, 37(1), 171

    Article  CAS  Google Scholar 

  9. Zhang L. P., Che W. L., Yang Z. Y., Liu X. M., Liu S., Xie Z. G., Zhu D. X., Su Z. M., Tang B., Bryce M. R., Chem. Sci., 2020, 11, 2369

    Article  CAS  Google Scholar 

  10. Yang H. C., Li R. F., Zhang Y. J., Yu M. X., Wang Z., Liu X., You W. W., Tu D. T., Sun Z. Q., Zhang R., Chen X. Y., Wang Q. B., J. Am. Chem. Soc., 2021, 143, 2601

    Article  CAS  Google Scholar 

  11. Hu Z. H., Fang C., Li B., Zhang Z. Y., Cao C. G., Cai M. S., Su S., Sun X. W., Shi X. J., Li C., Zhou T. J., Zhang Y. X., Chi C. W., He P., Xia X. M., Chen Y., Gambhir S. S., Cheng Z., Tian J., Nat. Biomed. Eng., 2020, 4, 259

    Article  Google Scholar 

  12. Diao S., Hong G. S., Antaris A. L., Blackburn J. L., Cheng K., Cheng Z., Dai H. J., Nano Res., 2015, 8, 3027

    Article  CAS  Google Scholar 

  13. Li J., Liu Y., Xu Y. L., Li L., Sun Y., Huang W., Coord. Chem. Rev., 2020, 415, 213318

    Article  CAS  Google Scholar 

  14. Zebibula A., Alifu N., Xia L. Q., Sun C. W., Yu X. M., Xue D. W., Liu L. W., Li G. H., Qian J., Adv. Funct. Mater., 2018, 28, 1703451

    Article  Google Scholar 

  15. Yu W. W., Falkner J. C., Shih B. S., Colvin V. L., Chem. Mater., 2004, 16, 3318

    Article  CAS  Google Scholar 

  16. Cui J. B., Jiang R., Guo C., Bai X. L., Xu S. Y., Wang L. Y., J. Am. Chem. Soc., 2018, 140, 5890

    Article  CAS  Google Scholar 

  17. Zheng K. Z., Loh K. Y., Wang Y., Chen Q. S., Fan J. Y., Jung T., Nam S. H., Suh Y. D., Liu X. G., Nano Today, 2019, 29, 100797

    Article  CAS  Google Scholar 

  18. Chhetri B. P., Karmakar A., Ghosh A., Part. Part. Syst. Charact., 2019, 36, 1900153

    Article  Google Scholar 

  19. Zhong Y. T., Dai H. J., Nano Res., 2020, 13, 1281

    Article  CAS  Google Scholar 

  20. Liegard F., Doualan J. L., Moncorge R., Bettinelli M., Appl. Phys. B: Lasers O, 2005, 80, 985

    Article  CAS  Google Scholar 

  21. Gu Y. Y., Guo Z. Y., Yuan W., Kong M. Y., Liu Y. L., Liu Y. T., Gao Y. L., Feng W., Wang F., Zhou J. J., Jin D. Y., Li F. Y., Nat. Photonics, 2019, 13, 580

    Article  CAS  Google Scholar 

  22. Wang Y. X., Feng L. H., Wang S., Adv. Funct. Mater., 2019, 29, 1806818

    Article  Google Scholar 

  23. Lu F., Yang L., Ding Y. J., Zhu J. J., Adv. Funct. Mater., 2016, 26, 4778

    Article  CAS  Google Scholar 

  24. Villa I., Vedda A., Cantarelli I. X., Pedroni M., Piccinelli F., Bettinelli M., Speghini A., Quintanilla M., Vetrone F., Rocha U., Jacinto C., Carrasco E., Rodriguez F. S., Juarranz A., del Rosal B., Ortgies D. H., Gonzalez P. H., Sole J. G., Garcia D. J., Nano Res., 2015, 8, 649

    Article  CAS  Google Scholar 

  25. Wang R., Zhou L., Wang W. X., Li X. M., Zhang F., Nat. Commun., 2017, 8, 14702

    Article  Google Scholar 

  26. Wang P. Y., Fan Y., Lu L. F., Liu L., Fan L. L., Zhao M. Y., Xie Y., Xu C. J., Zhang F., Nat. Commun., 2018, 9, 2898

    Article  Google Scholar 

  27. Cao C., Xue M., Zhu X. J., Yang P. Y., Feng W., Li F. Y., ACS Appl. Mat. Interfaces, 2017, 9, 18540

    Article  CAS  Google Scholar 

  28. Johnson N. J., He S., Diao S., Chan E. M., Dai H., Almutairi A., J. Am. Chem. Soc., 2017, 139, 3275

    Article  CAS  Google Scholar 

  29. Ding L. H., Ren F., Liu Z., Jiang Z. L., Yun B. F., Sun Q., Li Z., Bioconjugate Chem., 2020, 31, 340

    Article  CAS  Google Scholar 

  30. Lu F., Doane T. L., Zhu J. J., Burda C., Chem. Commun., 2014, 50, 642

    Article  CAS  Google Scholar 

  31. Zhong Y. T., Ma Z. R., Zhu S. J., Yue J. Y., Zhang M. X., Antaris A. L., Yuan J., Cui R., Wan H., Zhou Y., Wang W. Z., Huang N. F., Luo J., Hu Z. Y., Dai H. J., Nat. Commun., 2017, 8, 737

    Article  Google Scholar 

  32. Cosco E. D., Caram J. R., Bruns O. T., Franke D., Day R. A., Farr E. P., Bawendi M. G., Sletten E. M., Angew. Chem. Int. Ed., 2017, 56, 13126

    Article  CAS  Google Scholar 

  33. Yang Y. Q., Fan X. X., Li L., Yang Y. M., Nuernisha A., Xue D. W., He C., Qian J., Hu Q. L., Chen H., Liu J., Huang W., ACS Nano, 2020, 14, 2509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.21975131, 21674048), the Fund of Synergetic Innovation Center for Organic Electronics and Information Displays, and the Primary Research & Development Plan of Jiangsu Province, China(No.BE2016770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quli Fan.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Zhao, T., Sun, X. et al. Rare-earth Doped Nanoparticles with Narrow NIR-II Emission for Optical Imaging with Reduced Autofluorescence. Chem. Res. Chin. Univ. 37, 943–950 (2021). https://doi.org/10.1007/s40242-021-1172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1172-9

Keywords

Navigation