Skip to main content
Log in

Prototyping a wearable and stretchable graphene-on-PDMS sensor for strain detection on human body physiological and joint movements

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective ‘gateway’ over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene’s overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study will be made available from the corresponding author upon reasonable request.

References

  1. Ahn JH, Hong BH (2014) Graphene for displays that bend. Nat Nanotechnol 9(10):737–738. https://doi.org/10.1038/nnano.2014.226

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q, Di Y, Huard CM, Guo LJ, Wei J, Guo J (2015) Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays. J Mater Chem C 3(7):1528–1536. https://doi.org/10.1039/C4TC02448F

    Article  CAS  Google Scholar 

  3. Park CW, Moon YG, Seong H, Jung SW, Oh JY, Na BS, Park NM, Lee SS, Im SG, Koo JB (2016) Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces 8(24):15459–15465. https://doi.org/10.1021/acsami.6b01896

    Article  CAS  PubMed  Google Scholar 

  4. Song K, Han JH, Lim T, Kim N, Shin S, Kim J, Choo H, Jeong S, Kim YC, Wang ZL, Lee J (2016) Subdermal flexible solar cell arrays for powering medical electronic implants. Adv Healthcare Mater 5(13):1572–1580. https://doi.org/10.1002/adhm.201600222

    Article  CAS  Google Scholar 

  5. Han S, Liu C, Xu H, Yao D, Yan K, Zheng H, Chen HJ, Gui X, Chu S, Liu C (2018) Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flexible Electronics 2(1):16. https://doi.org/10.1038/s41528-018-0029-x

    Article  CAS  Google Scholar 

  6. Liu C, Han S, Xu H, Wu J, Liu C (2018) Multifunctional highly sensitive multiscale stretchable strain sensor based on a graphene/glycerol–kcl synergistic conductive network. ACS Appl Mater Interfaces 10(37):31716–31724. https://doi.org/10.1021/acsami.8b12674

    Article  CAS  PubMed  Google Scholar 

  7. Tian Z, He J, Chen X, Wen T, Zhai C, Zhang Z, Cho J, Chou X, Xue C (2018) Core–shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing. RSC Adv 8(6):2950–2957. https://doi.org/10.1039/C7RA12739A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Xu J, Wang W, Wang G-JN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T (2018) Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694):83–88. https://doi.org/10.1038/nature25494

    Article  CAS  PubMed  Google Scholar 

  9. Green Marques D, Alhais Lopes P, de Almeida AT, Majidi C, Tavakoli M (2019) Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab on a Chip 19(5):897–906. https://doi.org/10.1039/C8LC01093E

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Shi Q, Lee C (2019) From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater 7(3). https://doi.org/10.1063/1.5063498

  11. Li T, Li Y, Zhang T (2019) Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc Chem Res 52(2):288–296. https://doi.org/10.1021/acs.accounts.8b00497

    Article  CAS  PubMed  Google Scholar 

  12. Pang C, Lee G-Y, Kim T, Kim SM, Kim HN, Ahn SH, Suh KY (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801. https://doi.org/10.1038/nmat3380

    Article  CAS  PubMed  Google Scholar 

  13. Li C, Cui Y-L, Tian G-L, Shu Y, Wang X-F, Tian H, Yang Y, Wei F, Ren TL (2015) Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Sci Rep 5(1):15554. https://doi.org/10.1038/srep15554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J, Yuan Y, He X, Li Y (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9):8933–8941. https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  PubMed  Google Scholar 

  15. Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, Transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6):6252–6261. https://doi.org/10.1021/acsnano.5b01613

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q, Chen J, Li Y, Shi G (2016) High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8):7901–7906. https://doi.org/10.1021/acsnano.6b03813

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Zhang D, Wang K, Liu Y, Shang Y (2016) A novel strain sensor based on graphene composite films with layered structure. Compos A Appl Sci Manuf 80:95–103. https://doi.org/10.1016/j.compositesa.2015.10.010

    Article  CAS  Google Scholar 

  18. Gao J, Wang X, Zhai W, Liu H, Zheng G, Dai K, Mi L, Liu C, Shen C (2018) Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor. ACS Appl Mater Interfaces 10(40):34592–34603. https://doi.org/10.1021/acsami.8b11527

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Li J, Tran D, Luo C, Gao Y, Yu C, Xuan F (2017) Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. J Mater Chem C 5(42):11092–11099. https://doi.org/10.1039/C7TC03434B

    Article  CAS  Google Scholar 

  20. Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q, Zhao D, Zhang X, Tu M, Yang F, Zhou W (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3(1):3048. https://doi.org/10.1038/srep03048

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7(12):803–809. https://doi.org/10.1038/nnano.2012.206

    Article  CAS  PubMed  Google Scholar 

  22. Shin UH, Jeong DW, Park SM, Kim SH, Lee HW, Kim J-M (2014) Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon 80:396–404. https://doi.org/10.1016/j.carbon.2014.08.079

    Article  CAS  Google Scholar 

  23. Liao X, Zhang Z, Liang Q, Liao Q, Zhang Y (2017) Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold Nanofilms@Paper substrate. ACS Appl Mater Interfaces 9(4):4151–4158. https://doi.org/10.1021/acsami.6b12991

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20):11932–11939. https://doi.org/10.1039/C4NR03295K

    Article  CAS  PubMed  Google Scholar 

  25. Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5(1):3132. https://doi.org/10.1038/ncomms4132

    Article  CAS  PubMed  Google Scholar 

  26. Park S, Kim J, Chu M, Khine M (2016) Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv Mater Technol 1(5). https://doi.org/10.1002/admt.201600053

  27. Hao B, Mu L, Ma Q, Yang S, Ma PC (2018) Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Compos Sci Technol 163:162–170. https://doi.org/10.1016/j.compscitech.2018.05.017

    Article  CAS  Google Scholar 

  28. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  29. Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Graphene-based transparent strain sensor. Carbon 51:236–242. https://doi.org/10.1016/j.carbon.2012.08.048

    Article  CAS  Google Scholar 

  30. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710. https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Hao J, Huang Z, Zheng G, Dai K, Liu C, Shen C (2018) Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126:360–371. https://doi.org/10.1016/j.carbon.2017.10.034

    Article  CAS  Google Scholar 

  32. Yan Y, Potts M, Jiang Z, Sencadas V (2018) Synthesis of highly-stretchable graphene – poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications. Compos Sci Technol 162:14–22. https://doi.org/10.1016/j.compscitech.2018.04.010

    Article  CAS  Google Scholar 

  33. Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Func Mater 24(29):4666–4670. https://doi.org/10.1002/adfm.201400379

    Article  CAS  Google Scholar 

  34. Yan C, Wang J, Kang W, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027. https://doi.org/10.1002/adma.201304742

    Article  CAS  PubMed  Google Scholar 

  35. Wang DY, Tao LQ, Liu Y, Zhang TY, Pang Y, Wang Q, Jiang S, Yang Y, Ren TL (2016) High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale 8(48):20090–20095. https://doi.org/10.1039/C6NR07620C

    Article  CAS  PubMed  Google Scholar 

  36. Tao LQ, Wang DY, Tian H, Ju ZY, Liu Y, Pang Y, Chen YQ, Yang Y, Ren TL (2017) Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 9(24):8266–8273. https://doi.org/10.1039/C7NR01862B

    Article  CAS  PubMed  Google Scholar 

  37. Madhavan R (2022) Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites. J Mater Sci: Mater Electron 33(7):3465–3484. https://doi.org/10.1007/s10854-021-07540-8

    Article  CAS  Google Scholar 

  38. Ansari ZA, Baloda S, Powar S, Islam SM, Singh S (2020) Flexible resistive strain sensors for application in wearable electronics 020005. https://doi.org/10.1063/5.0031750

  39. Verma RP, Sahu PS, Rathod M, Mohapatra SS, Lee J, Saha B (2022) Ultra‐Sensitive and Highly Stretchable Strain Sensors for Monitoring of Human Physiology. Macromol Mater Eng 307(3). https://doi.org/10.1002/mame.202100666

  40. Paul SJ, Elizabeth I, Gupta BK (2021) Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces 13(7):8871–8879. https://doi.org/10.1021/acsami.1c00946

    Article  CAS  PubMed  Google Scholar 

  41. Dandegaonkar G, Ahmed A, Sun L, Adak B, Mukhopadhyay S (2022) Cellulose based flexible and wearable sensors for health monitoring. Mater Adv 3(9):3766–3783. https://doi.org/10.1039/D1MA01210J

    Article  CAS  Google Scholar 

  42. Shukla P, Saxena P, Madhwal D, Bhardwaj N, Jain VK (2021) Battery-operated resistive sensor based on electrochemically exfoliated pencil graphite core for room temperature detection of LPG. Sens Actuators, B Chem 343:130133. https://doi.org/10.1016/j.snb.2021.130133

    Article  CAS  Google Scholar 

  43. Anwar MA, Zainal AK, Kurniawan T, Asmara YP, Harun WSW, Priyadonko G, Saptaji K (2019) Electrochemical exfoliation of pencil graphite core by salt electrolyte. IOP Conf Ser: Mater Sci Eng 469:012105. https://doi.org/10.1088/1757-899X/469/1/012105

    Article  Google Scholar 

  44. Chen J, Zheng J, Gao Q, Zhang J, Zhang J, Omisore OM, Wang L, Li H (2018) Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl Sci 8(3):345. https://doi.org/10.3390/app8030345

    Article  CAS  Google Scholar 

  45. Kato H, Itagaki N, Im HJ (2019) Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene. Carbon 141:76–82. https://doi.org/10.1016/j.carbon.2018.09.017

    Article  CAS  Google Scholar 

  46. Wu JB, Lin ML, Cong X, Liu HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47(5):1822–1873. https://doi.org/10.1039/C6CS00915H

    Article  CAS  PubMed  Google Scholar 

  47. Bayle M, Reckinger N, Felten A, Landois P, Lancry O, Dutertre B, Colomer JF, Zahab AA, Henrard L, Sauvajol JL, Paillet M (2018) Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast. J Raman Spectrosc 49(1):36–45. https://doi.org/10.1002/jrs.5279

    Article  CAS  Google Scholar 

  48. Jeong YR, Park H, Jin SW, Hong SY, Lee S, Ha JS (2015) Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Func Mater 25(27):4228–4236. https://doi.org/10.1002/adfm.201501000

    Article  CAS  Google Scholar 

  49. Amjadi M, Turan M, Clementson CP, Sitti M (2016) Parallel Microcracks-based ultrasensitive and highly stretchable strain sensors. ACS Appl Mater Interfaces 8(8):5618–5626. https://doi.org/10.1021/acsami.5b12588

    Article  CAS  PubMed  Google Scholar 

  50. Soe HM, Abd Manaf A, Matsuda A, Jaafar M (2021) Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sens Actuators, A 329:112793. https://doi.org/10.1016/j.sna.2021.112793

    Article  CAS  Google Scholar 

  51. Wang C, Zhao J, Ma C, Sun J, Tian L, Li X, Li F, Han X, Liu C, Shen C, Dong L (2017) Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy 34:578–585. https://doi.org/10.1016/j.nanoen.2017.02.050

    Article  CAS  Google Scholar 

  52. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301. https://doi.org/10.1038/nnano.2011.36

    Article  CAS  PubMed  Google Scholar 

  53. Amjadi M, Yoon YJ, Park I (2015) Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 26(37):375501. https://doi.org/10.1088/0957-4484/26/37/375501

    Article  CAS  PubMed  Google Scholar 

  54. Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8(9):8819–8830. https://doi.org/10.1021/nn503454h

    Article  CAS  PubMed  Google Scholar 

  55. Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff RS (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2(1):870. https://doi.org/10.1038/srep00870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Ashok K. Chauhan, Founder President, Amity Universe, for his unwavering support and encouragement. They also extend their thanks to the other members of the AIARS (M&D) group at Amity University, Noida, for their assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Shukla.

Ethics declarations

Ethical approval

Ethical approval not required for this research work

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Saxena, P., Madhwal, D. et al. Prototyping a wearable and stretchable graphene-on-PDMS sensor for strain detection on human body physiological and joint movements. Microchim Acta 191, 301 (2024). https://doi.org/10.1007/s00604-024-06368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06368-3

Keywords

Navigation