Skip to main content
Log in

Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urgent expectation of the next-generation energy storage devices for electric vehicles has driven researchers’ attention to the lithium-oxygen (Li-O2) batteries due to the satisfied specific energy density. Herein, spatially-controlled Co3O4 nanoflake arrays with three-dimensional-networked morphology are adopted as flexible and self-standing oxygen cathodes in Li-O2 batteries. The spinel-phase Co3O4 nanoflakes were converted from two-dimension metal-organic frameworks with abundant available channels and large specific surface area. The open-structure nanoflake arrays possess sufficient Li2O2/cathode contact interface, great bifunctional catalytic performance and adequate Li2O2 accommodation, leading to the enhanced electrochemical performance of the Li-O2 batteries. As expected, the binder-free porous Co3O4/CT cathode delivers a high capacity of 6,509 mAh·g−1 (200 mA·g−1) and enhanced stability over 100 cycles (limited by 1,000 mAh·g−1). In addition, pouch-type Li-O2 batteries were successfully designed and cycled with Co3O4/CT cathode as oxygen electrodes, demonstrating its potential application for flexible electronics and wearable energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198.

    Article  CAS  Google Scholar 

  2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  3. Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

    Article  Google Scholar 

  4. Gong, H.; Wang, T.; Xue, H. R.; Fan, X. L.; Gao, B.; Zhang, H. B.; Shi, L.; He, J. P.; Ye, J. H. Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Mater. 2018, 13, 49–56.

    Article  Google Scholar 

  5. Wu, S. C.; Yi, J.; Zhu, K.; Bai, S. Y.; Liu, Y.; Qiao, Y.; Ishida, M.; Zhou, H. S. A super-hydrophobic quasi-solid electrolyte for Li-O2 battery with improved safety and cycle life in humid atmosphere. Adv. Energy Mater. 2017, 7, 1601759.

    Article  Google Scholar 

  6. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786.

    Article  CAS  Google Scholar 

  7. Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

    Article  Google Scholar 

  8. Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427–8435.

    Article  CAS  Google Scholar 

  9. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

    Article  CAS  Google Scholar 

  10. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  11. Padbury, R.; Zhang, X. W. Lithium-oxygen batteries—limiting factors that affect performance. J. Power Sources 2011, 196, 4436–4444.

    Article  CAS  Google Scholar 

  12. Gong, H.; Xue, H. R.; Wang, T.; Guo, H.; Fan, X. L.; Song, L.; Xia, W.; He, J. P. High-loading nickel cobaltate nanoparticles anchored on three-dimensional N-doped graphene as an efficient bifunctional catalyst for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 18060–18068.

    Article  CAS  Google Scholar 

  13. Chen, L. Y.; Guo, X. W.; Han, J. H.; Liu, P.; Xu, X. D.; Hirata, A.; Chen, M. W. Nanoporous metal/oxide hybrid materials for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 3620–3626.

    Article  CAS  Google Scholar 

  14. Lu, X. Y.; Yin, Y.; Zhang, L.; Huang, S. Z.; Xi, L. X.; Liu, L. X.; Oswald, S.; Schmidt, O. G. 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Mater. 2019, 16, 155–162.

    Article  Google Scholar 

  15. Sun, C. W.; Li, F.; Ma, C.; Wang, Y.; Ren, Y. L.; Yang, W.; Ma, Z. H.; Li, J. Q.; Chen, Y. J.; Kim, Y. et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2014, 2, 7188–7196.

    Article  CAS  Google Scholar 

  16. Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145–3152.

    Article  CAS  Google Scholar 

  17. Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

    Article  CAS  Google Scholar 

  18. Li, F. J.; Zhang, T.; Yamada, Y.; Yamada, A.; Zhou, H. S. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv. Energy Mater. 2013, 3, 532–538.

    Article  CAS  Google Scholar 

  19. Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

    Article  CAS  Google Scholar 

  20. McCloskey, B. D.; Addison, D. A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries. ACS Catal. 2017, 7, 772–778.

    Article  CAS  Google Scholar 

  21. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

    Article  CAS  Google Scholar 

  22. Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

    Article  CAS  Google Scholar 

  23. Lu, X. Y.; Deng, J. W.; Si, W. P.; Sun, X. L.; Liu, X. H.; Liu, B.; Liu, L. F.; Oswald, S.; Baunack, S.; Grafe, H. J. et al. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes. Adv. Sci. 2015, 2, 1500113.

    Article  Google Scholar 

  24. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  CAS  Google Scholar 

  25. Yin, W.; Shen, Y.; Zou, F.; Hu, X. L.; Chi, B.; Huang, Y. H. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2015, 7, 4947–4954.

    Article  CAS  Google Scholar 

  26. Huang, T.; Chen, Y.; Lee, J. A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 2017, 13, 17023.

    Google Scholar 

  27. Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

    Article  Google Scholar 

  28. Jia, G.; Zhang, W.; Fan, G. Z.; Li, Z. S.; Fu, D. G.; Hao, W. C.; Yuan, C. W.; Zou, Z. G. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 13781–13785.

    Article  CAS  Google Scholar 

  29. Tang, J.; Wu, S. C.; Wang, T.; Gong, H.; Zhang, H. B.; Alshehri, S. M.; Ahamad, T.; Zhou, H. S.; Yamauchi, Y. Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 2796–2804.

    Article  CAS  Google Scholar 

  30. Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. W. Metal-organic frameworks as cathode materials for Li-O2 batteries. Adv. Mater. 2014, 26, 3258–3262.

    Article  CAS  Google Scholar 

  31. Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

    Article  Google Scholar 

  32. Zhang, J.; Wang, L. J.; Xu, L. L.; Ge, X. M.; Zhao, X.; Lai, M.; Liu, Z. L.; Chen, W. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 720–726.

    Article  CAS  Google Scholar 

  33. Wu, F.; Zhang, X. X.; Zhao, T. L.; Chen, R. J.; Ye, Y. S.; Xie, M.; Li, L. Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 17620–17626.

    Article  CAS  Google Scholar 

  34. Riaz, A.; Jung, K. N.; Chang, W.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries. Chem. Commun. 2013, 49, 5984–5986.

    Article  CAS  Google Scholar 

  35. Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081–6085.

    Article  CAS  Google Scholar 

  36. Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

    Article  Google Scholar 

  37. Guan, C.; Liu, X. M.; Ren, W. N.; Li, X.; Cheng, C. W.; Wang, J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391.

    Article  Google Scholar 

  38. Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500–9502.

    Article  CAS  Google Scholar 

  39. Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.

    Article  Google Scholar 

  40. Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

    Article  CAS  Google Scholar 

  41. Varghese, B.; Teo, C. H.; Zhu, Y.; Reddy, M. V.; Chowdari, B. V. R.; Wee, A. T. S.; Tan, V. B. C.; Lim, C. T.; Sow, C. H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932–1939.

    Article  CAS  Google Scholar 

  42. Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  CAS  Google Scholar 

  43. Guan, Q.; Cheng, J. L.; Wang, B.; Ni, W.; Gu, G. F.; Li, X. D.; Huang, L.; Yang, G. C.; Nie, F. D. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7626–7632.

    Article  CAS  Google Scholar 

  44. Wang, S. F.; Sha, Y. J.; Zhu, Y. L.; Xu, X. M.; Shao, Z. P. Modified template synthesis and electrochemical performance of a Co3O.4/mesoporous cathode for lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 16132–16141.

    Article  CAS  Google Scholar 

  45. Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

    Article  CAS  Google Scholar 

  46. Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84.

    Article  CAS  Google Scholar 

  47. Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087–4091.

    Article  CAS  Google Scholar 

  48. Wu, S. C.; Qiao, Y.; Deng, H.; Zhou, H. S. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium-oxygen batteries with non-carbon cathodes. J. Mater. Chem. A 2018, 6, 9816–9822.

    Article  CAS  Google Scholar 

  49. Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101–3105.

    Article  CAS  Google Scholar 

  50. Zhang, T.; Matsuda, H.; Zhou, H. S. Gel-derived cation-π stacking films of carbon nanotube-graphene complexes as oxygen cathodes. ChemSusChem 2014, 7, 2845–2852.

    Article  CAS  Google Scholar 

  51. Liu, L. L.; Wang, J.; Hou, Y. Y.; Chen, J.; Liu, H. K.; Wang, J. Z.; Wu, Y. P. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small 2016, 12, 602–611.

    Article  CAS  Google Scholar 

  52. Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Liu, M. L.; Shao, Z. P.; Ni, M. Co3O4 nanosheets as active material for hybrid Zn batteries. Small 2018, 14, 1800225.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support from the National Natural Science Foundation of China (Nos. 51602153 and 11575084), the Natural Science Foundation of Jiangsu Province (No. BK20160795), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0276), Zhejiang Provincial Natural Science Foundation of China under (No. LQ18B010005), the Fundamental Research Funds for the Central Universities (No. NE2018104), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). G. H. also thanks the China Scholarship Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang, Jianping He or Renzhi Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Wang, T., Xue, H. et al. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Res. 12, 2528–2534 (2019). https://doi.org/10.1007/s12274-019-2480-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2480-y

Keywords

Navigation