Skip to main content
Log in

Vertically-aligned nanostructures for electrochemical energy storage

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy storage devices with high energy and power densities are highly attractive for various applications ranging from portable electronics to electric vehicles and grid-level energy storage, such as rechargeable batteries and supercapacitors. One limiting factor in power density is the ion transport in electrolyte, particularly in tortuous electrode materials with low porosity. A viable approach to enhance ion transport in electrolyte is to create vertically aligned structures and thus reduce electrode tortuosity. In the past decades, various methods have been explored to develop vertically aligned structures. This review summarizes battery kinetics to illustrate the importance of low tortuosity in electrodes, and then introduces various methods to create vertically aligned nanostructures, such as direct growth, templating and microfabrications. The electrochemical performance of electrodes or electrolytes created by each method is presented. At the end, this paper discusses challenges with these structures and the directions these technologies can be taken in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Google Scholar 

  2. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346–349.

    Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Google Scholar 

  4. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Google Scholar 

  5. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Google Scholar 

  6. Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three-dimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440–2445.

    Google Scholar 

  7. Soloveichik, G. L. Battery technologies for large-scale stationary energy storage. Ann. Rev. Chem. Biomol. Eng. 2011, 2, 503–527.

    Google Scholar 

  8. Qian, G. Y.; Liao, X. B.; Zhu, Y. X.; Pan, F.; Chen, X.; Yang, Y. Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 2019, 4, 690–701.

    Google Scholar 

  9. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Google Scholar 

  10. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Google Scholar 

  11. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 160–170.

    Google Scholar 

  12. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863.

    Google Scholar 

  13. Yao, P. C.; Zhu, B.; Zhai, H. W.; Liao, X. B.; Zhu, Y. X.; Xu, W. H.; Cheng, Q.; Jayyosi, C.; Li, Z.; Zhu, J. et al. PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 2018, 18, 6113–6120.

    Google Scholar 

  14. Cheng, Q.; Xu, W. H.; Qin, S. Y.; Das, S.; Jin, T. W.; Li, A. J.; Li, A. C.; Qie, B. Y.; Yao, P. C.; Zhai, H. W. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019. (in press)

  15. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 171–179.

    Google Scholar 

  16. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Google Scholar 

  17. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 320–329.

    Google Scholar 

  18. Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2015, 16, 459–465.

    Google Scholar 

  19. Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569.

    Google Scholar 

  20. Shi, Y.; Zhou, X. Y.; Yu, G. H. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 2017, 50, 2642–2652.

    Google Scholar 

  21. Li, H. S.; Peng, L. L.; Zhu, Y.; Zhang, X. G.; Yu, G. H. Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett. 2016, 16, 5938–5943.

    Google Scholar 

  22. Zhao, F.; Shi, Y.; Pan, L. J.; Yu, G. H. Multifunctional nanostructured conductive polymer gels: Synthesis, properties, and applications. Acc. Chem. Res. 2017, 50, 1734–1743.

    Google Scholar 

  23. Shi, Y.; Zhang, J.; Bruck, A. M.; Zhang, Y. M.; Li, J.; Stach, E. A.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S.; Yu, G. H. A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv. Mater. 2017, 29, 1603922.

    Google Scholar 

  24. Mirvakili, S. M.; Hunter, I. W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors. Adv. Mater. 2017, 29, 1700671.

    Google Scholar 

  25. Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.; Guillorn, M. A.; Klein, K. L.; Lowndes, D. H.; Simpson, M. L. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys. 2005, 97, 041301.

    Google Scholar 

  26. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Google Scholar 

  27. Li, X. J.; Wu, Y. C.; Hua, K.; Li, S.; Fang, D.; Luo, Z. P.; Bao, R.; Fan, X.; Yi, J. H. Vertically aligned polyaniline nanowire arrays for lithium-ion battery. Colloid Polym. Sci. 2018, 296, 1395–1400.

    Google Scholar 

  28. In, J. B.; Grigoropoulos, C. P.; Chernov, A. A.; Noy, A. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions. ACS Nano 2011, 5, 9602–9610.

    Google Scholar 

  29. Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 2007, 10, A106–A110.

    Google Scholar 

  30. Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High-performance battery electrodes via magnetic templating. Nat. Energy 2016, 1, 16099.

    Google Scholar 

  31. Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

    Google Scholar 

  32. Li, L. S.; Erb, R. M.; Wang, J. J.; Wang, J.; Chiang, Y. M. Fabrication of low-tortuosity ultrahigh-area-capacity battery electrodes through magnetic alignment of emulsion-based slurries. Adv. Energy Mater. 2019, 9, 1802472.

    Google Scholar 

  33. Behr, S.; Amin, R.; Chiang, Y. M.; Tomsia, A. P. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology. Ceram. Forum Int. 2015, 92, 39–43.

    Google Scholar 

  34. Roberts, A. D.; Li, X.; Zhang, H. F. Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 2015, 95, 268–278.

    Google Scholar 

  35. Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

    Google Scholar 

  36. Zhu, M. W.; Song, J. W.; Li, T.; Gong, A.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Henderson, D.; Hu, L. B. Highly anisotropic, highly transparent wood composites. Adv. Mater. 2016, 28, 5181–5187.

    Google Scholar 

  37. Lu, L. L.; Lu, Y. Y.; Xiao, Z. J.; Zhang, T. W.; Zhou, F.; Ma, T.; Ni, Y.; Yao, H. B.; Yu, S. H.; Cui, Y. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 2018, 30, 1706745.

    Google Scholar 

  38. Li, T.; Zhu, M. W.; Yang, Z.; Song, J. W.; Dai, J. Q.; Yao, Y. G.; Luo, W.; Pastel, G.; Yang, B.; Hu, L. B. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 2016, 6, 1601122.

    Google Scholar 

  39. Liu, T.; Wang, Y.; Zhang, Y. X.; Fang, S. M.; Lei, L. B.; Ren, C.; Chen, F. L. Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochem. Commun. 2015, 61, 106–109.

    Google Scholar 

  40. Wang, C. L.; Taherabadi, L.; Jia, G. Y.; Madou, M.; Yeh, Y.; Dunn, B. C-MEMS for the manufacture of 3D microbatteries. Electrochem. Solid-State Lett. 2004, 7, A435–A438.

    Google Scholar 

  41. Chen, C. J.; Zhang, Y.; Li, Y. J.; Kuang, Y. D.; Song, J. W.; Luo, W.; Wang, Y. B.; Yao, Y. G.; Pastel, G.; Xie, J. et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 2017, 7, 1700595.

    Google Scholar 

  42. Jin, S.; Jiang, Y.; Ji, H. X.; Yu, Y. Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 2018, 30, 1802014.

    Google Scholar 

  43. Newman, J.; Thomas-Alyea, K. E. Electrochemical Systems; 3rd ed. John Wiley & Sons: Hoboken, N.J., 2004.

    Google Scholar 

  44. Song, H. W.; Li, N.; Cui, H.; Wang, C. X. Enhanced storage capability and kinetic processes by pores- and hetero-atoms-riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 2014, 4, 81–87.

    Google Scholar 

  45. Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954.

    Google Scholar 

  46. Tliha, M.; Khaldi, C.; Boussami, S.; Fenineche, N.; El-Kedim, O.; Mathlouthi, H.; Lamloumi, J. Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: A review. J. Solid State Electroche. 2014, 18, 577–593.

    Google Scholar 

  47. Feng, F.; Geng, M.; Northwood, D. O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: A review. Int. J. Hydrogen Energy 2001, 26, 725–734.

    Google Scholar 

  48. Chen, J. H.; Li, W. Z.; Wang, D. Z.; Yang, S. X.; Wen, J. G.; Ren, Z. F. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 2002, 40, 1193–1197.

    Google Scholar 

  49. Bohlen, O.; Kowal, J.; Sauer, D. U. Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model. J. Power Sources 2007, 172, 468–475.

    Google Scholar 

  50. Thorat, I. V.; Stephenson, D. E.; Zacharias, N. A.; Zaghib, K.; Harb, J. N.; Wheeler, D. R. Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 2009, 188, 592–600.

    Google Scholar 

  51. Ebner, M.; Chung, D. W.; García, R. E.; Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 2014, 4, 1301278.

    Google Scholar 

  52. Pouraghajan, F.; Knight, H.; Wray, M.; Mazzeo, B.; Subbaraman, R.; Christensen, J.; Wheeler, D. Quantifying tortuosity of porous Li-ion battery electrodes: Comparing polarization-interrupt and blocking-electrolyte methods. J. Electrochem. Soc. 2018, 165, A2644–A2653.

    Google Scholar 

  53. DuBeshter, T.; Sinha, P. K.; Sakars, A.; Fly, G. W.; Jorne, J. Measurement of tortuosity and porosity of porous battery electrodes. J. Electrochem. Soc. 2014, 161, A599–A605.

    Google Scholar 

  54. Suthar, B.; Landesfeind, J.; Eldiven, A.; Gasteiger, H. A. Method to determine the in-plane tortuosity of porous electrodes. J. Electrochem. Soc. 2018, 165, A2008–A2018.

    Google Scholar 

  55. Forouzan, M. M.; Wray, M.; Robertson, L.; Wheeler, D. R. Tortuosity of composite porous electrodes with various conductive additives in an alkaline system. J. Electrochem. Soc. 2017, 164, A3117–A3130.

    Google Scholar 

  56. Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J. Mater. Chem. 2010, 20, 6998–7004.

    Google Scholar 

  57. Mirvakili, S. M.; Pazukha, A.; Sikkema, W.; Sinclair, C. W.; Spinks, G. M.; Baughman, R. H.; Madden, J. D. W. Niobium nanowire yarns and their application as artificial muscles. Adv. Funct. Mater. 2013, 23, 4311–4316.

    Google Scholar 

  58. Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T. P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485.

    Google Scholar 

  59. Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

    Google Scholar 

  60. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.

    Google Scholar 

  61. Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.

    Google Scholar 

  62. Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

    Google Scholar 

  63. Xu, J. S.; Zhu, Y. J. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4752–4757.

    Google Scholar 

  64. Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

    Google Scholar 

  65. Yuan, K.; Guo-Wang, P.; Hu, T.; Shi, L.; Zeng, R.; Forster, M.; Pichler, T.; Chen, Y. W.; Scherf, U. Nanofibrous and graphene-templated conjugated microporous polymer materials for flexible chemosensors and supercapacitors. Chem. Mater. 2015, 27, 7403–7411.

    Google Scholar 

  66. Wang, Z. L.; Guo, R.; Ding, L. X.; Tong, Y. X.; Li, G. R. Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage. Sci. Rep. 2013, 3, 1204.

    Google Scholar 

  67. Roberts, A. D.; Li, X.; Zhang, H. F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356.

    Google Scholar 

  68. Cheng, J. L.; Gu, G. F.; Guan, Q.; Razal, J. M.; Wang, Z. Y.; Li, X. L.; Wang, B. Synthesis of a porous sheet-like V2O5-CNT nanocomposite using an ice-templating “bricks-and-mortar” assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. J. Mater. Chem. A. 2016, 4, 2729–2737.

    Google Scholar 

  69. Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601057.

    Google Scholar 

  70. Roberts, A. D.; Wang, S. X.; Li, X.; Zhang, H. F. Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: High capacity and high-rate performance as lithium-ion battery anode materials. J. Mater. Chem. A 2014, 2, 17787–17796.

    Google Scholar 

  71. Cheng, J. L.; Gu, G. F.; Guan, Q.; Razal, J. M.; Wang, Z. Y.; Li, X. L.; Wang, B. Synthesis of a porous sheet-like V2O5-CNT nanocomposite using an ice-templating “bricks-and-mortar” assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 2729–2737.

    Google Scholar 

  72. Needham, S. A.; Wang, G. X.; Liu, H. K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159, 254–257.

    Google Scholar 

  73. Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

    Google Scholar 

  74. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

    Google Scholar 

  75. Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of polypyrrole nanorod arrays for supercapacitor: Effect of length of nanorods on capacitance. J. Nanosci. Nanotechnol. 2008, 8, 5036–5041.

    Google Scholar 

  76. Zhou, Y. K.; Shen, C. M.; Li, H. L. Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template. Solid State Ionics 2002, 146, 81–86.

    Google Scholar 

  77. Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 2008, 20, 667–681.

    Google Scholar 

  78. Shi, N.; Su, F.; Huan, D. M.; Xie, Y.; Lin, J.; Tan, W. Z.; Peng, R. R.; Xia, C. R.; Chen, C. S.; Lu, Y. L. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. J. Mater. Chem. A 2017, 5, 19664–19671.

    Google Scholar 

  79. Pearse, A.; Schmitt, T.; Sahadeo, E.; Stewart, D. M.; Kozen, A.; Gerasopoulos, K.; Talin, A. A.; Lee, S. B.; Rubloff, G. W.; Gregorczyk, K. E. Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 2018, 12, 4286–4294.

    Google Scholar 

  80. Su, D. S.; Schlögl, R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 2010, 3, 136–168.

    Google Scholar 

  81. Li, J.; Zhang, G. F.; Chen, N.; Nie, X. W.; Ji, B. X.; Qu, L. T. Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 24840–24845.

    Google Scholar 

  82. Fan, Y.; Zhang, Q.; Xiao, Q. Z.; Wang, X. H.; Huang, K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon 2013, 59, 264–269.

    Google Scholar 

  83. Chen, K. F.; Song, S. Y.; Liu, F.; Xue, D. F. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 2015, 44, 6230–6257.

    Google Scholar 

  84. Basiricò, L.; Lanzara, G. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance. Nanotechnology 2012, 23, 305401.

    Google Scholar 

  85. Amade, R.; Jover, E.; Caglar, B.; Mutlu, T.; Bertran, E. Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J. Power Sources 2011, 196, 5779–5783.

    Google Scholar 

  86. Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45, 2511–2518.

    Google Scholar 

  87. Yoon, B. J.; Jeong, S. H.; Lee, K. H.; Kim, H. S.; Park, C. G.; Han, J. H. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem. Phys. Lett. 2004, 388, 170–174.

    Google Scholar 

  88. Xu, Y.; Zhou, M.; Lei, Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502514.

    Google Scholar 

  89. Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.

    Google Scholar 

  90. Vayssieres, L.; Graetzel, M. Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angew. Chem., Int. Ed. 2004, 43, 3666–3670.

    Google Scholar 

  91. Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918–922.

    Google Scholar 

  92. Wang, Y.; Kong, D. Z.; Shi, W. H.; Liu, B.; Sim, G. J.; Ge, Q.; Yang, H. Y. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv. Energy Mater. 2016, 6, 1601057.

    Google Scholar 

  93. Gutiérrez, M. C.; Jobbágy, M.; Rapún, N.; Ferrer, M. L.; Monte, F. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Adv. Mater. 2006, 18, 1137–1140.

    Google Scholar 

  94. Li, Y.; Wu, C.; Bai, Y.; Liu, L.; Wang, H.; Wu, F.; Zhang, N.; Zou, Y. F. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl. Mater. Interfaces 2016, 8, 18832–18840.

    Google Scholar 

  95. Huang, C.; Grant, P. S. Coral-like directional porosity lithium ion battery cathodes by ice templating. J. Mater. Chem. A 2018, 6, 14689–14699.

    Google Scholar 

  96. Huang, Y. S.; Wu, D. Q.; Jiang, J. Z.; Mai, Y. Y.; Zhang, F.; Pan, H.; Feng, X. L. Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy 2015, 12, 287–295.

    Google Scholar 

  97. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Google Scholar 

  98. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322.

    Google Scholar 

  99. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Google Scholar 

  100. Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A. et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378–19392.

    Google Scholar 

  101. Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018, 18, 3829–3838.

    Google Scholar 

  102. Usseglio-Viretta, F. L. E.; Colclasure, A.; Mistry, A. N.; Claver, K. P. Y.; Pouraghajan, F.; Finegan, D. P.; Heenan, T. M. M.; Abraham, D.; Mukherjee, P. P.; Wheeler, D. et al. Resolving the discrepancy in tortuosity factor estimation for li-ion battery electrodes through micro-macro modeling and experiment. J. Electrochem. Soc. 2018, 165, A3403–A3426.

    Google Scholar 

  103. Zhao, Y.; Liu, B. R.; Pan, L. J.; Yu, G. H. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870.

    Google Scholar 

  104. Xiao, R.; Cho, S. I.; Liu, R.; Lee, S. B. Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc. 2007, 129, 4483–4489.

    Google Scholar 

  105. Wang, Z. L.; Guo, R.; Ding, L. X.; Tong, Y. X.; Li, G. R. Controllable template-assisted electrodeposition of single- and multi-walled nanotube arrays for electrochemical energy storage. Sci. Rep. 2013, 3, 1204.

    Google Scholar 

  106. Wang, Y.; Fu, X. W.; Zheng, M.; Zhong, W. H.; Cao, G. Z. Strategies for building robust traffic networks in advanced energy storage devices: A focus on composite electrodes. Adv. Mater. 2019, 31, 1804204.

    Google Scholar 

  107. Ruiz-Morales, J. C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Marín Rueda, J. R.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859.

    Google Scholar 

  108. Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-dimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.

    Google Scholar 

  109. Arthur, T. S.; Bates, D. J.; Cirigliano, N.; Johnson, D. C.; Malati, P.; Mosby, J. M.; Perre, E.; Rawls, M. T.; Prieto, A. L.; Dunn, B. Three-dimensional electrodes and battery architectures. MRS Bull. 2011, 36, 523–531.

    Google Scholar 

  110. Liu, J.; Zhu, H. Z.; Shiraz, M. H. A. Toward 3D solid-state batteries via atomic layer deposition approach. Front. Energy Res. 2018, 6, 10.

    Google Scholar 

  111. Cirigliano, N.; Sun, G.Y.; Membreno, D.; Malati, P.; Kim, C. J.; Dunn, B. 3D architectured anodes for lithium-ion microbatteries with large areal capacity. Energy Technol. 2014, 2, 362–369.

    Google Scholar 

  112. Baggetto, L.; Niessen, R. A. H.; Roozeboom, F.; Notten, P. H. L. High energy density all-solid-state batteries: A challenging concept towards 3D integration. Adv. Functional Mater. 2008, 18, 7, 1057–1066.

    Google Scholar 

  113. Hur, J. I.; Smith, L. C.; Dunn, B. High areal energy density 3D lithium-ion microbatteries. Joule 2018, 2, 1187–1201.

    Google Scholar 

  114. Deville, S. Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering; Springer: Cham, 2017.

    Google Scholar 

Download references

Acknowledgements

Yuan Yang acknowledges the funding support from AFOSR (No. FA9550-18-1-0410). Xue Wang thank the financial support from China Scholarship Council during her study (CSC, No. 201706120088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong He, Shanyi Du or Yuan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, T., Borovilas, J. et al. Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 12, 2002–2017 (2019). https://doi.org/10.1007/s12274-019-2392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2392-x

Keywords

Navigation